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1Abstra
tAn Adaptive Cell-Centered Proje
tion Methodfor the In
ompressible Euler EquationsbyDaniel Fran
is MartinDo
tor of Philosophy in Engineering-Me
hani
al EngineeringUniversity of California at BerkeleyProfessor Phillip Colella, ChairAdaptive methods for the numeri
al solution of partial di�erential equations 
on
entrate
omputational e�ort where it is most needed. Su
h methods have proved useful for over
ominglimitations in 
omputational resour
es and improving the resolution of numeri
al solutions to awide range of problems. By lo
ally re�ning the 
omputational mesh where needed to improve thea

ura
y of the solution, we more eÆ
iently use 
omputational resour
es, enabling better solutionresolution than is possible with traditional single-grid approa
hes, representing a more eÆ
ient useof 
omputational resour
es.In this work, we present an adaptive 
ell-
entered proje
tion method for the in
ompressibleEuler equations. It is an extension of the adaptive mesh re�nement (AMR) methodology developedby Berger and Oliger for hyperboli
 problems. Our algorithm is fully adaptive in time and spa
ethrough the use of sub
y
ling, in whi
h �ner grids are advan
ed at a smaller timestep than 
oarserones. When 
oarse and �ne grids rea
h the same time, they are then syn
hronized to ensure that theglobal solution is 
onservative and satis�es the divergen
e 
onstraint a
ross all levels of re�nement.



2Our method introdu
es three main innovations. First, we extend a 
ell-
entered approxi-mate proje
tion dis
retization to a multilevel hierar
hy of re�ned grids. Employing a 
ell-
enteredproje
tion dis
retization permits the use of only one set of (
ell-
entered) solvers, whi
h simpli�esimplementation and extension of this algorithm. Also, we use a volume-dis
repan
y s
heme to ap-proximately 
orre
t for adve
tion errors due to the presen
e of 
oarse-�ne interfa
es. Finally, wesyn
hronize 
oarse and �ne levels by performing multilevel solves over all grids whi
h have rea
hedthe same time.Results are presented whi
h show that the method presented in this work is se
ond-ordera

urate, does not introdu
e instabilities due to the presen
e of 
oarse-�ne interfa
es, and whi
hdemonstrate the in
reased solution a

ura
y due to lo
al re�nement.

Phillip Colella, Chair Date
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Chapter 1
Introdu
tion

Adaptive numeri
al methods whi
h fo
us 
omputational e�ort where it is needed have beena fo
us of mu
h resear
h. Solutions to the equations whi
h govern the behavior of many physi
alphenomena, in
luding those of 
uid dynami
s, 
an display behavior over a great number of s
ales.In many 
ases, it is ne
essary to resolve features on very small s
ales in order to a

urately 
omputelarger-s
ale features of the solution.The traditional solution to numeri
al under-resolution of a problem has been to employ auniformly �ne 
omputational mesh over the entire problem. In general, for a �nite-di�eren
e/�nite-volume method, the a

ura
y of the solution depends on the mesh spa
ing. The �ner the �nite-di�eren
e mesh (i.e. the more mesh points in a given region), the more a

urate the solution.Unfortunately, due to limitations in 
omputational resour
es, it is often impossible to use a singleuniform mesh to solve a given problem to the desired a

ura
y. On the other hand, it is often the
ase that the �nest resolution is only required in regions whi
h only make up a small fra
tion of the
omputational domain. Computing an unne
essarily �ne solution outside these regions representsa waste of 
omputational resour
es. One example of this arises in aerodynami
s. When 
omputing



CHAPTER 1. INTRODUCTION 2the 
ow around an air
raft, high resolution is often required to adequately resolve rapidly varyingfeatures like boundary layers and wakes, while in large regions far from the body, the solution varieslittle, requiring less resolution to a

urately represent the solution. In many 
ases, use of a uniform�ne mesh will result in the bulk of available 
omputational resour
es being spent 
omputing anunne
essarily a

urate solution in regions far from the body, while important 
ow features near thebody are under-resolved due to a la
k of resour
es.In re
ognition of this, there has been mu
h e�ort toward developing methods whi
h adaptthe �nite-di�eren
e mesh to pla
e more grid points in regions where higher resolution is needed,while using fewer grid points in regions where a 
oarser mesh is suÆ
ient to adequately resolvethe solution. Baker [11℄ provides a good survey of adaptive methods in a �nite-element 
ontext(although the re�nement 
on
epts are generally appli
able).One strategy is known as 
lustering. In this approa
h, the total number of grid points andgrid topology is kept 
onstant, and the grid itself is moved to pla
e higher resolution (in the formof a �ner mesh) where ne
essary, while 
oarsening the grid in regions where a �ne mesh is deemedunne
essary. The mesh itself deforms to follow features in the 
ow. For this reason, this approa
his often known as the moving-grid approa
h. This approa
h has found the most appli
ation inaerodynami
s, parti
ularly in steady-state solutions. Advantages of this method in
lude preservationof the basi
 topology of the mesh, whi
h 
an be very useful in parallel implementations be
ausepartitioning and load-balan
ing of the solution 
an be maintained as the solution evolves. Also, ithas the advantage of a uniform dis
retization on a �xed-logi
 mesh, rather than dis
rete 
oarse and�ne regions. With the proper grid generation algorithms, transitions between 
oarse and �ne regions
an be made smooth, eliminating dis
ontinuities in the 
omputational mesh itself. In prin
iple, the



CHAPTER 1. INTRODUCTION 3goal of this strategy is equidistribution of error among all the 
ells in the 
omputational domainfor a given number of mesh points. In this sense, solutions are optimal, in that they represent thebest possible use of available 
omputation [11℄. Like the moving grid approa
h, unstru
tured gridsalso have the advantage of a uniform problem des
ription, in that the dis
retizations used in re�nedregions will be the same as those used in 
oarser regions. This makes it easy to add adaptivity to anexisting method, be
ause it does not involve new dis
retizations. Unfortunately, it is generally morediÆ
ult to 
ontrol the a

ura
y of the dis
retization in unstru
tured-grid methods, parti
ularly forproblems without a variational formulation. As in the moving grid approa
h, 
are must also betaken to 
ontrol the quality of the resulting grid, with respe
t to stability and 
onditioning of therepresentation of the problem on the mesh. Moreover, unstru
tured grid methods generally requiremore memory to store the various metri
s ne
essary for 
omputation.Stru
tured meshes, in 
ontrast, are made up of a regular tessellation of 
ells whi
h allhave the same lo
al 
onne
tivity. The most 
ommon type of stru
tured mesh is a re
tangularCartesian mesh. Design and implementation of �nite-di�eren
e methods on stru
tured meshes isvery well understood, and the regularities of the mesh 
an be exploited to in
rease the a

ura
y ofthe dis
retization. Also, it is simple to apply multigrid a

elerated iterative methods to 
onstru
t
onstru
t fast ellipti
 and paraboli
 solvers for stru
tured meshes. The main disadvantages of stru
-tured meshes has been the diÆ
ulty of adapting su
h meshes to 
omplex geometries, although someprogress has been made in this area [2, 3, 8, 21, 28, 50℄. Also, lo
al re�nement on stru
tured mesheswill result in a dis
ontinuity in the mesh spa
ing between 
oarse and re�ned 
ells, whi
h often en-tails a loss of a

ura
y. Stru
tured mesh �nite-di�eren
e approa
hes have been used extensively ina variety of appli
ations, in
luding aerodynami
s, sho
k dynami
s, and atmospheri
 
uid dynami
s.
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cells that need to be refined(a) cells that need to be refined(b)Figure 1.1: Lo
al re�nement strategies: (a) 
ell-by-
ell re�nement, (b) blo
k-stru
tured re�nementOn stru
tured meshes, lo
al re�nement 
an either be 
ell-by-
ell or blo
k-stru
tured (Figure1.1). In 
ell-by-
ell re�nement, 
ells are individually 
hosen for re�nement and are re�ned individ-ually. While this is eÆ
ient, in that no 
ells are re�ned unne
essarily, it leads to fairly 
ompli
atedtree-like data stru
tures whi
h must maintain nearest-neighbor lists. This 
an result in a largeamount of overhead in managing the AMR 
omputation.In 
ontrast, we will use blo
k-stru
tured re�nement, in whi
h 
ells tagged for re�nementare grouped together into blo
ks, whi
h are then re�ned in logi
ally re
tangular pat
hes. Whilethis results in some unne
essary re�nement, it enables greater eÆ
ien
y in managing the 
ompositegrid stru
ture, sin
e there is a smaller number of irregular nodes (on the order of one per pat
h,rather than one per node), and irregular indexing is 
on�ned to 
oarse-�ne boundaries, rather thanpotentially every 
ell. Also, this makes it simpler to separate the implementation of uniform-gridalgorithms from the adaptive aspe
ts of the 
al
ulation, whi
h in most 
ases 
an be represented asboundary 
onditions on the various re�ned regions. Be
ause most of the 
al
ulation 
an be doneon re
tangular arrays of data, it is easier to optimize the bulk of the 
omputation. Advan
ing



CHAPTER 1. INTRODUCTION 5blo
ks of 
ells also makes it easier to re�ne in time as well as spa
e, by taking smaller timestepswhen advan
ing re�ned pat
hes. Unfortunately, this does make the 
omplete adaptive algorithmmore 
ompli
ated to program, be
ause update operations are performed in two steps: regular grid
al
ulations on unions of re
tangular grids whi
h make up levels of re�nement, and 
al
ulations onan irregular set 
orresponding to the boundary of the union of re
tangles at a level of re�nement withthe grids whi
h make up the 
oarser levels of re�nement. In 
ontrast, when updating the solutionon an unstru
tured grid, only one set of operations must be performed, although the unstru
turednature of the mesh requires that they be irregular in nature for all 
ells in the 
omputational domain.The re�nement strategy we will follow is based on that of Berger and Oliger [19℄, as extendedfor hyperboli
 
onservation laws by Berger and Colella [18℄. In [19℄, regions marked for re�nementwere 
overed by re
tangular pat
hes of re�ned 
ells. These pat
hes 
ould be oriented arbitrarilyto better align with solution features like sho
ks. Along with spatial re�nement, their method alsoin
luded temporal re�nement (\sub
y
ling") { re�ned pat
hes were updated using a smaller timestepthan that of the 
oarse grid. To simplify inter-level 
ommuni
ation and boundary 
onditions, manylater implementations based on this strategy (for example that in [18℄) did not orient re�ned pat
hesarbitrarily, instead nesting re�ned pat
hes 
ompletely within 
oarse grid 
ells, whi
h aligned there�ned grids with the 
oarse mesh. A variation of this strategy was used by Arney and Flaherty [9℄who used tree-stru
tured blo
k re�nements of individual pat
hes of 
ells.The basi
 blo
k-stru
tured re�nement strategy of [19℄ has been applied su

essfully for anumber of appli
ations. It was applied to gas dynami
s 
al
ulations in two dimensions by Bergerand Colella [18℄, and in three dimensions by Bell, et al. [15℄. Steinthorsen et al. [58℄ extended thismethodology to the 
ompressible Navier-Stokes equations. Berger and Jameson [21℄ and Dudek [34℄



CHAPTER 1. INTRODUCTION 6developed methods for 
omputing steady-state 
ompressible 
ows in 
ompli
ated geometry usingblo
k-stru
tured re�nement of mapped grids. Skamaro
k and Klemp [57℄ implemented an adaptivemethod for atmospheri
 
ows based on a 
ompressible 
ow model whi
h retained the arbitrarilyoriented subgrids of [19℄. Algorithms to adaptively 
ompute time-dependent solutions to porousmedia 
ows were developed by Hornung and Trangenstein [40℄ and by Propp [51℄.To 
ompute steady-state solutions to the in
ompressible Navier-Stokes equations, Thomp-son and Ferziger [65℄ used an adaptive multigrid method based on the adaptive multigrid algorithmoriginally developed by Brandt [24℄. For time-dependent in
ompressible 
ows, Howell and Bell [41℄and Minion [48℄ developed adaptive proje
tion methods whi
h did not re�ne in time but did enfor
ethe divergen
e 
onstraint on the 
omposite solution a
ross all levels of re�nement. In atmospheri
modeling, the anelasti
 equations for atmospheri
 motion are similar in stru
ture to those for in
om-pressible 
ow. Clark and Farley [30℄ and Stevens [59, 60℄ 
onstru
ted adaptive proje
tion methodsfor the anelasti
 equations whi
h were fully adaptive in time and spa
e, but whi
h did not enfor
ethe in
ompressibility 
onstraint on the 
omposite grid hierar
hy, but instead on a grid-by-grid basis.Finally, Almgren et al. [5℄ have developed an adaptive proje
tion method whi
h re�nes intime as well as spa
e and whi
h enfor
es the divergen
e 
onstraint in a 
omposite sense a
ross allre�nement levels. That algorithm is the starting point for this work.1.1 AMR for In
ompressible FlowsOur goal will be to extend the blo
k-stru
tured adaptive mesh re�nement (AMR) strategiesdeveloped for hyperboli
 
onservation laws by Berger and Colella [18℄ to the in
ompressible Eulerequations in two dimensions. The addition of lo
al re�nement substantially 
ompli
ates the design
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x

yFigure 1.2: Blo
k-stru
tured lo
al re�nement. Note that re�nement is by a dis
rete amount and isorganized into logi
ally-re
tangular pat
hes.and implementation of proje
tion algorithms, be
ause of the need to suÆ
iently 
ouple the solutionsa
ross interfa
es between 
oarse and �ne solutions.1.1.1 Dis
retization IssuesFollowing [18℄, we will employ nested re�nements of blo
k-stru
tured grids along with a
orresponding re�nement in time as well as spa
e. In this approa
h, groups of 
ells are re�ned inlogi
ally re
tangular blo
ks, whi
h simpli�es management of re�ned regions. Additional re�nement
an easily be nested within existing re�ned pat
hes, as shown in Figure 1.2.Using lo
ally re�ned grids 
ompli
ates the design of proje
tion methods in many ways. Thealgorithm of [18℄ was intended for the solution of hyperboli
 
onservation laws; 
onservation wasmaintained by the use of lo
al 
orre
tions where �ne and 
oarse solutions meet. Be
ause solutionsto the equations of in
ompressible 
ow are also ellipti
 in nature, additional steps must be taken toensure that the method presented in this work respe
ts the appropriate smoothness of these solutions



CHAPTER 1. INTRODUCTION 8in the presen
e of lo
al re�nement.Spe
ial numeri
al operators must be de�ned whi
h a
t on the 
omposite solution a
ross thedi�erent levels of re�nement. For example, the 
hoi
e of the dis
retization of proje
tion operatorsbe
omes important. In [41℄ an idempotent proje
tion dis
retization was used, in whi
h the �nite-di�eren
e sten
ils produ
ed a lo
al de
oupling of the 
omputational grid. It was found that thisde
oupling had to be respe
ted a
ross the interfa
es between 
oarse and �ne regions, signi�
antly
ompli
ating the algorithm.We will use a non-idempotent proje
tion algorithm, often referred to as an approximateproje
tion, whi
h has simpler sten
ils. Be
ause repeated appli
ation of the approximate proje
tionwill not produ
e the same result as one appli
ation, issues like stability of the proje
tion operatorand the 
hoi
e of proje
ting the velo
ity �eld u or the approximation to �u�t be
ome more impor-tant. Almgren et al. [5℄ use a node-
entered proje
tion whi
h was developed using a �nite-elementformulation; as su
h, the stability and a

ura
y of their proje
tion is well understood. We will usethe approximate proje
tion of Lai [44℄, for whi
h there are fewer analyti
al results, but for whi
hthere is also a fairly large body of experien
e.Re�nement in time as well as spa
e 
ompli
ates the algorithm as well. Sin
e di�erentregions will be advan
ed using di�erent timesteps, enfor
ing the divergen
e 
onstraint be
omesmore 
ompli
ated. For example, if we are proje
ting the velo
ity �eld, u � n must be 
ontinuousa
ross the interfa
es between 
oarse and �ne regions. Sin
e the time-
enterings of the velo
ity onthe 
oarse grid, u
, and on the �ne grid, uf , 
an be di�erent due to the di�erent timesteps in 
oarseand �ne regions, enfor
ing this smoothness be
omes more diÆ
ult. If the velo
ity �eld update �u�tis being proje
ted, enfor
ing this smoothness be
omes more diÆ
ult still.



CHAPTER 1. INTRODUCTION 9Another issue in the design of lo
ally adaptive methods is that of freestream preservation.In the hyperboli
 algorithm of [18℄, the solution on the 
oarse grids is updated, and then the solutionon the �ne grid is updated, using boundary 
onditions interpolated from surrounding 
oarse 
ells.In general, after both 
oarse and �ne advan
es, the 
oarse solution in regions 
overed by re�nedpat
hes will not be equivalent to the averaged �ne solution whi
h 
overs it. Also, 
uxes a
rossthe 
oarse-�ne interfa
e 
omputed during the 
oarse update will not be equal to those 
omputedduring the �ne update. In order to maintain 
onservation, the �ne solutions are averaged onto the
oarse-grid regions, and the 
ux into the 
oarse-grid 
ells adja
ent to re�ned pat
hes is 
orre
ted sothat the 
ux into 
oarse 
ells a
ross 
oarse-�ne interfa
es is the average of the 
ux 
omputed a
rossthe 
oarse-�ne interfa
e from the �ne side during the �ne-
ell updates. These 
orre
tions ensurethat 
onserved quantities will be 
onserved. If the adve
tion s
heme is 
onsistent, and there is noexpli
it spa
e/time dependen
y of the 
ux fun
tion, then a passively adve
ted s
alar �eld whi
h isspatially 
onstant will remain 
onstant as the 
ow evolves. This property is known as freestreampreservation.In the 
ase of in
ompressible 
ow, the same property of 
onstant s
alar �elds to remain
onstant should be observed. For in
ompressible 
ow, however, adve
tive 
uxes are 
omputed usingadve
tion velo
ities whi
h are themselves 
omputed by solving an ellipti
 PDE during the lo
altimestep. While averaging �ne solutions onto 
overed regions of 
oarse grids and 
orre
ting adve
tive
uxes into 
oarse 
ells adja
ent to re�ned pat
hes (as in [18℄) will ensure 
onservation, there is noguarantee that freestream preservation will be maintained, be
ause there is no guarantee that the
oarse- and �ne-level adve
tion velo
ities a
ross the 
oarse-�ne interfa
es will be 
onsistent. So,additional steps must be taken to ensure that the property of freestream preservation is maintained



CHAPTER 1. INTRODUCTION 10in the 
omputation of in
ompressible 
ows on lo
ally re�ned grids.While the algorithm in Almgren et al. [5℄ addresses ea
h of these issues, the spe
i�
sof the algorithm are 
ompli
ated. Many spe
ialized algorithmi
 pie
es are required to enfor
e theappropriate smoothness and 
onservation of the solution. Our approa
h has been to attempt tosimplify the algorithm to redu
e the number of algorithmi
 
omponents, with the goal of making iteasily extensible to more 
ompli
ated problems.This work extends [5℄ in several important ways. First, we employ a 
ell-
entered dis
reteproje
tion operator, similar to the one developed in [44℄ and used in [48℄. Be
ause our algorithmwill require a 
ell-
entered solver for the proje
tion of edge-
entered adve
tion velo
ities and foraddition of di�usion (see, for example, [5℄), using a 
ell-
entered proje
tion has the advantage ofsimpli
ity in that only one set of (
ell-
entered) solvers need be developed. This will make extensionof this work to more 
ompli
ated problems and geometries mu
h simpler, sin
e the author hasfound that 
onstru
tion and extension of solvers in a lo
ally adaptive 
ontext 
an be fairly time-
onsuming. Unlike [48℄, we re�ne in time as well as spa
e, whi
h means that, as in [5℄, a set ofsyn
hronization operations must be performed. Also, unlike [48℄ and [5℄, we apply the proje
tion tothe entire velo
ity �eld, instead of to the approximation to �u�t , whi
h appears to be ne
essary forour 
ell-
entered proje
tion when temporal re�nement is employed.Unlike [5℄, in whi
h levels are syn
hronized in 
oarse-�ne pairs, we performmultilevel ellipti
solves in our syn
hronization proje
tion, syn
hronizing all levels whi
h have rea
hed the same pointin time. On
e a multilevel solver has been developed, this is 
on
eptually simpler, and there issome eviden
e that syn
hronization based on multilevel solves are more a

urate, at least in the
ell-
entered 
ase. Finally, we maintain freestream preservation in a di�erent way. In [5℄, freestream



CHAPTER 1. INTRODUCTION 11preservation is maintained exa
tly by a proje
tion of the adve
tion velo
ity mismat
h, followed bya re-adve
tion step on the 
oarse level. Then, the 
orre
ted adve
tive 
uxes are interpolated to�ner levels. In this work, we instead employ a lagged 
orre
tion based on the volume-dis
repan
yformulation used by A
s et al. [1℄ and by Trangenstein and Bell [66℄, whi
h is approximate in nature.In pra
ti
e, we show that the volume-dis
repan
y method restri
ts adve
tion errors to those made inthe 
ourse of a single timestep immediately adja
ent to 
oarse-�ne interfa
es. In 
ontrast, withoutthis 
orre
tion, adve
tion errors a

umulate and are adve
ted by the 
ow, 
orrupting the globalsolution. While the algorithm in [5℄ solves the in
ompressible Navier-Stokes equations, this work willsolve the equations of invis
id in
ompressible 
ow, leaving extension to the vis
ous 
ase for futurework. Sin
e the stability issues involved in implementing proje
tion methods for in
ompressible
ow are more diÆ
ult in the invis
id 
ase, the invis
id equations are a suÆ
ient test for the newproje
tion dis
retization and algorithm presented in this work.1.2 Thesis OverviewIn this thesis, a se
ond-order adaptive proje
tion method for the in
ompressible Eulerequations in two dimensions is presented and results are presented to demonstrate its e�e
tiveness.Chapter 2 des
ribes the single-grid implementation of the proje
tion method we will use.First, the proje
tion method is introdu
ed, and some ba
kground is presented, along with the 
on-stru
tion of the various dis
retizations of the proje
tion used in this work. Then, our single-gridstrategy of point relaxation 
oupled with multigrid a

eleration for solving Poisson's equation isdes
ribed and explained. Finally, the single-grid version of the proje
tion algorithm used in this



CHAPTER 1. INTRODUCTION 12work is outlined and its 
onvergen
e is demonstrated .In Chapter 3, our adaptive strategy for numeri
ally solving Poisson's equation on an adap-tive hierar
hy of re�ned grids is presented. Spe
ial 
are is given to the issues of 
oarse-�ne mat
hing
onditions and the 
onstru
tion of 
omposite operators. This solution strategy is then extended tothe spe
ial 
ases of solving on individual levels and groups of levels whi
h do not 
omprise the entire
omputational domain. Be
ause the solution of Poisson's equation is 
entral to the the proje
tionmethod, we also explore other strategies for solving the equations in the 
ontext of AMR, with aneye toward the eventual implementation in the time-dependent adaptive proje
tion method. Finally,an error analysis of the adaptive solutions is performed, to determine the sour
es and size of theerrors in this method.In Chapter 4, the single-grid proje
tion algorithm of Chapter 2 is extended to an adap-tive framework. First, the issues raised by the addition of lo
al temporal and spatial re�nementare explored, in
luding sub
y
ling (re�nement in time), 
oarse-�ne boundary 
onditions, the 
on-stru
tion of 
omposite and level-based operators, and the syn
hronization operations whi
h must beperformed to maintain the proper smoothness of the solution for 
onservation and a

ura
y. Thenthe re
ursive timestep on a level in the multilevel algorithm is presented. Finally, the method usedto initialize the 
omputation at the initial timestep and after a regridding operation is outlined.Chapter 5 des
ribes the various methods used to estimate the error in a solution in orderto de
ide where to pla
e re�ned pat
hes. In this work, the grids 
an be pre-de�ned by the user, theuser 
an provide a solution-based error 
riteria, or Ri
hardson extrapolation 
an be used to estimatethe lo
al trun
ation error of the solution to determine whi
h 
ells to re�ne. Also, the method usedto group the \tagged" 
ells into 
lusters and 
reate a new grid hierar
hy is des
ribed.



CHAPTER 1. INTRODUCTION 13Results of test problems used to validate the method are presented in Chapter 6. Severaltest problems were sele
ted to demonstrate the 
onvergen
e and performan
e of the method. Inparti
ular, we demonstrate that 
ow features are not signi�
antly 
orrupted by passage througha 
oarse-�ne interfa
e, that the volume-dis
repan
y 
orre
tion is an e�e
tive tool for 
ontrollingadve
tion errors, and that the use of lo
al re�nement with this algorithm allows attainment of thea

ura
y of the equivalent �ne-grid 
omputation.In Chapter 7, issues involved in designing and implementing the adaptive algorithm insoftware form are dis
ussed. Extensive use was made of the obje
t-oriented fun
tionality of theC++ programming language, along with the numeri
al optimization of FORTRAN 77. Also, weused BoxLib [52℄, a C++ 
lass library designed to assist in the implementation of �nite-di�eren
eon logi
ally re
tangular grids.In the �nal 
hapter, we summarize what was learned in the 
ourse of this work and present
on
lusions based on the �nal results.
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Chapter 2Finite Di�eren
e Methods on aSingle Grid

This 
hapter will des
ribe the single-grid proje
tion method used to solve the Euler equa-tions in this work.2.1 Finite-Di�eren
e NotationIn a �nite-di�eren
e 
omputation, the spatial domain is dis
retized into a �nite number of
ells; the goal of the 
omputation is to approximate the exa
t solution in ea
h 
ell. In a 
onsistent andstable 
omputation, the more 
ells in the 
omputation, the better the approximation. A 
ompletedes
ription of the theory and pra
ti
e of �nite-di�eren
e methods and their pla
e in the greaterframework of numeri
al mathemati
s is obviously far beyond the s
ope of this work; the reader isreferred to a basi
 text in numeri
al PDE's, su
h as [62℄.We will use a regular stru
tured Cartesian mesh in this work. The two-dimensional domain
 is divided into 
ells by pla
ing a regular re
tangular grid over the domain. For a re
tangulardomain extending from (xlo; ylo) to (xhi; yhi), this is simple { in two dimensions, there will be nx
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∆ x

Lx

∆ y
Ly

Figure 2.1: Basi
 Cartesian �nite-di�eren
e grid. Note that �x 6= �y in this 
ase.
ells in the x-dire
tion, and ny 
ells in the y-dire
tion. In general, we will index the 
ells by (i; j) =(0::nx � 1; 0::ny � 1). The 
ell spa
ing is denoted as (�x;�y) = (Lxnx ; Lyny ), where Lx = (xhi � xlo)and Ly = (yhi � ylo) . See Figure 2.1.The boundary of 
 will be denoted as �
; the boundary of the physi
al domain will alsobe referred to as a physi
al boundary.Quantities de�ned on this Cartesian grid may be 
ell-
entered, edge-
entered, or node-
entered. A quantity is said to be 
ell-
entered if it is de�ned at the 
enter of the �nite-di�eren
e
ell; �ij = �(x
elli ; y
ellj ), where(x
elli ; y
ellj ) = (xlo + (i+ 12)�x; ylo + (j + 12)�y):A quantity is said to be node-
entered if it is 
entered at a node on the 
omputational grid:



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 16

1

2

y
F
i,j-

1

2

1

2

ηi-  ,j-

1

2

φi,j

X

XF
x

i-   ,j

Figure 2.2: Centering of �nite-di�eren
e quantities. � is 
ell-
entered, � is node-
entered, and F x and F yare edge-
entered�i� 12 ;j� 12 = �(xnodei� 12 ; ynodej� 12 ), where(xnodei� 12 ; ynodej� 12 ) = (xlo + i�x; ylo + j�y):Quantities whi
h are 
entered along the edges between 
ells are 
alled edge-
entered. In two dimen-sions, an edge-
entered quantity is either 
entered on an x-edge, where it is 
entered between the(i; j) and (i�1; j) 
ells on the grid, or it is 
entered on a y-edge between the (i; j) and (i; j�1) 
ells.In other words, the x-edge quantity F xi� 12 ;j is 
entered at (xnodei� 12 ; y
ellj ), while the y-edge quantityF yi;j� 12 is 
entered at (x
elli ; ynodej� 12 ). See Figure 2.2.2.1.1 Ghost Cell Implementation of Physi
al Boundary ConditionsBoundary 
onditions will be enfor
ed with the use of ghost 
ells, imaginary 
ells outsidethe 
omputational domain whi
h will 
ontain appropriate values for � (see Figure 2.3). This hasthe advantage of 
omputational simpli
ity as well as ease of programming, sin
e it is often possible
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Figure 2.3: Ghost 
ells outside 
omputational domain. Solid 
ells are within the 
omputational domain,while dashed 
ells are ghost 
ells outside the 
omputational domain used to enfor
e boundary 
onditions.to use the same dis
retization of the operator both in the interior of the domain and for 
ells alongthe boundary. The ghost 
ell values will be set using appropriate dis
retizations of the boundary
onditions. For Diri
hlet boundary 
onditions, the ghost 
ell value 
an be 
omputed as (using theleft boundary as an example): ��1;j = 2�BC � �0;j : (2.1)where �BC is the value of �(xlo; j) spe
i�ed for the inhomogeneous boundary 
ondition. This is theresult of a linear extrapolation of � through �BC on the physi
al boundary, and so is O(h2) for thevalue of �(� 32�x; yj). For homogeneous Diri
hlet boundary 
onditions, this redu
es to:��1;j = ��0;j (2.2)We 
an also represent an inhomogeneous Diri
hlet boundary 
ondition by the third-orderextrapolation formula: ��1;j = 83�BC � 2�0;j + 13�1;j : (2.3)
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onditions, the ghost-
ell value is given by:��1;j = �0;j ��x����n�BC (2.4)where ���nBC is the normal derivative spe
i�ed by the Neumann boundary 
ondition. For homoge-neous Neumann boundary 
onditions, ����n�BC is 0. Finally, at times we will want to extrapolateto 
ompute boundary 
onditions. We will use either linear extrapolation:��1;j = 2�0;j � �1;j (2.5)or se
ond-order extrapolation: ��1;j = 3�0;j � 3�1;j + �2;j : (2.6)2.2 Poisson's EquationPoisson's equation appears in the des
riptions of many physi
al problems, su
h as 
uid dy-nami
s, and ele
trodynami
s, and will be ne
essary for our solution algorithm for the in
ompressibleEuler equations. Be
ause of the simpli
ity of our problem (for the 
onstant-density Euler equationswe will be restri
ted to the 
onstant-
oeÆ
ient 
ase), we will be able to employ fairly simple solutionte
hniques.We wish to solve the 
onstant-
oeÆ
ient Poisson's equation:�' = r � r' = � on 
; (2.7)with boundary 
onditions: a(x; y)�'�n + b(x; y)' = f(x; y) on �
: (2.8)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 19Note that if a is zero, we are solving a problem with Diri
hlet boundary 
onditions, while if b is zerowe are solving a problem subje
t to Neumann boundary 
onditions.For simpli
ity, we will assume a uniform Cartesian grid in two dimensions, with �x =�y = h. The extension to a non-uniform mesh is straightforward. (See, for example, [36℄.) �i;jwill be the dis
rete approximation to '(xi; yj). � and � will be 
ell-
entered, so that �i;j representsthe solution at (x; y) = (h(i+ 12 ); h(j + 12 )). We will use the standard 5-point dis
retization of theLapla
ian operator: (L�)i;j = (�i+1;j + �i�1;j + �i;j+1 + �i;j�1 � 4�i;j)h2 (2.9)For the time being, we will restri
t our dis
ussion to homogeneous Diri
hlet boundary 
onditions, ' =0 on �
; this 
orresponds to the boundary 
ondition (2.8) with a = 0, b = 1, and f = 0. The physi
alboundary 
onditions will be enfor
ed using the ghost-
ell formalism des
ribed in Se
tion 2.1.1, andwe will approximate these boundary 
onditions using (2.1). We will use multigrid a

elerated pointrelaxation to solve this equation, be
ause the extension of multigrid to the lo
ally-re�ned 
ase isstraightforward and well-understood.2.2.1 Trun
ation Error AnalysisWe de�ne �ei;j as the exa
t solution to the 
ontinuous problem, evaluated at the 
ell-
enters:�ei;j = '(xi; yj) (2.10)Then the trun
ation error �i;j is de�ned as:�i;j = �i;j � L(�e)i;j (2.11)where L is the dis
retization of the Lapla
ian operator given in (2.9).
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ult to show, using Taylor expansions, that�i;j = (O(h2) for interior 
ellsO(1) for boundary 
ells: i = 0, i = (nx � 1), j = 0, or j = (ny � 1) (2.12)The trun
ation on the interiors is O(h2) due to a 
an
ellation of errors inherent in the 
entered-di�eren
e dis
retization of L. As we see, there is a loss of a

ura
y at the boundary, in part be
ausewe 
an no longer take advantage of these 
an
ellations, and in part be
ause of the lower-order natureof the boundary 
ondition dis
retization in (2.2).If we de�ne the solution error �,�i;j = �i;j � �ei;j (2.13)then the solution error satis�es the following error equation:L� = �: (2.14)The solution error � is O(h2) at all points on the grid, despite the lower-order approximation at theboundary. This is be
ause, for smooth solutions, it is possible to maintain global a

ura
y even whenusing a less-a

urate dis
retization on a set of 
ells whi
h has a lower dimension than the problemspa
e. In our 
ase, the problem spa
e is two-dimensional, while the redu
ed-a

ura
y dis
retizationon the boundary is on a one-dimensional set of 
ells. In general, we 
an lose one order of a

ura
yon a set of 
ells one dimension less than the problem spa
e. This would imply that we 
an have anO(h) boundary 
ondition and still maintain global se
ond-order a

ura
y in our problem. This 
anbe most easily understood using the modi�ed-equation analysis of Johansen [43℄.In that approa
h, we view the dis
rete solution as the solution to a 
ontinuous problemwith a pie
ewise-
onstant 
harge distribution in ea
h 
ell. Sin
e Poisson's equation is linear, weexpe
t that we 
an separate the solution error � into the sum of 
ontributions to the total error
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e in ea
h 
ell. We de�ne �(kl) as the solution error indu
ed by � (kl), whi
h is anapproximation to the trun
ation error �k;l integrated over the 
ell volume:�(kl) = (Lh)�1� (kl); (2.15)� (kl)i;j = �h2�i;j if (i; j) = (k; l)0 otherwiseGiven the interpretation of � (kl) as a 
harge of strength h2�k;l lo
ated at (xk ; yl), we expe
t that�(kl) = O(h2)�k;l: (2.16)The total error at point (i; j), �i;j , would then be the sum of the errors indu
ed by the trun
ationerror in ea
h 
ell in the domain: �i;j = Xk;l2
 �(kl)i;j : (2.17)In interior 
ells, this would be �i;j�h2 = O(h4). If the boundary 
ondition dis
retization isO(h), then in the boundary 
ells, this would be � bndryi;j �h2 = O(h3). There are O( 1h2 ) interior 
ells,for a total 
ontribution of O(h2) to �, while there are only O( 1h ) boundary 
ells, so their 
ontributionto � is also O(h2). So, using boundary 
onditions for whi
h � = O(h) on the physi
al boundary stillleads to a se
ond-order a

urate method.For the 
ase of Diri
hlet boundary 
onditions, one obtains a sharper result: if 
ell (k; l) isadja
ent to a physi
al boundary, then �(kl) = O(h3)�k;l. To leading order in h, the �eld indu
ed by� (k;l) is that indu
ed by a 
harge �k;lh2, plus that indu
ed by an image 
harge of strength �k;lh2,
entered at the ghost-
ell (�1; j) (for the left boundary). From potential theory, the e�e
t on thesolution of a dipole sour
e 
an be approximated by:�(d) � �i;j � h2 � [ln(d+�x)� ln(d��x)℄� O(h3)�O(h): (2.18)
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e again, there are O( 1h ) boundary 
ells, so the e�e
t of the boundary 
ells on the solution error isa
tually O(h3), one order less than that of the interior 
ells. From this, it follows that one 
an use aboundary 
ondition for whi
h � = O(1) at boundary 
ells, but still maintain se
ond-order a

ura
yin the solution. In parti
ular, the boundary 
ondition represented by (2.2) leads to a se
ond-ordera

urate method.2.2.2 Point RelaxationIt is well known and do
umented in the literature that solving the resulting system ofequations dire
tly is an O(N 32 ) operation, where N = nxny is the number of grid points. This is
omputationally expensive; instead, we will use an iterative s
heme. Rather than solve the systemof equations exa
tly, we will 
ompute a series of (hopefully) better approximations to the solution,starting with an initial guess �0, and 
ontinuing with the nth iterate f�ngn�1. We 
ontinue untilthe error in our solution is less than a given toleran
e.One way to 
onstru
t an iterative method is as an asso
iated unsteady problem for ~�, wherethe steady state solution (� ~��t = 0) is the solution:� ~��t = L~�� � (2.19)De�ning a step-size � and using forward Euler, we 
an dis
retize this asso
iated problem as:~�n+1i;j = ~�ni;j + �(L~�n � �)i;j (2.20)It is obvious that this method is linear, and will also leave the exa
t solution un
hanged.This still leaves open the question of whether this will 
onverge to a steady-state solution,and if so, how to sele
t the proper �. One way to analyze this method is to pla
e the problem in
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orre
tion form. We �rst de�ne the residual R:Resn = �� L~�n (2.21)This is an indi
ation of how well we are solving the equation { at steady state, when we have rea
hedthe solution to Poisson's problem, the residual will go to zero. We 
an also de�ne Æn as the error inthe nth iterate of �: Æni;j = ~�ni;j � �: (2.22)Using equations (2.21) and (2.22) in (2.19), we see that the error satis�es the heat equation:�Æ�t = LÆ: (2.23)We would like to see how Æ behaves. For stability and 
onvergen
e we desire that Æ ! 0 as t!1.In the 
ase of (2.20), we would like to show that for the operator L:LÆ = (I + ��)Æ; (2.24)(where I is the identity operator) that the norm of Æ is redu
ed:jjLÆjj � jjÆjj: (2.25)In the 
ase of doubly periodi
 boundary 
onditions, we 
an use Fourier analysis to examinethe behavior of Æ. To avoid 
onfusion with i = p�1, we will temporarily repla
e the indi
es (i; j)with (jx; jy). Using the dis
rete Fourier transform:Ænjx;jy = nx2Xkx=�nx2 +1 ny2Xky=�ny2 +1 akxakye2�i(kxjx+kyjy)h (2.26)If we apply a Fourier transform to the operator L,(LÆ)jx;jy = nx2Xkx=�nx2 +1 ny2Xky=�ny2 +1 akxaky�(kx; ky)e2�i(kxjx+kyjy)h (2.27)
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t of the operator L on the error with a wavenumber(kx; ky). For stability, �(kx; ky) � 1 for all wavenumbers kx and ky . Note that we 
an relatethe �nite-di�eren
e notation and Fourier spa
e notation by re
ognizing that we 
an de�ne a shiftoperator S to represent a shift by one on the �nite-di�eren
e grid. So, if we are 
onsidering 
ell(jx; jy), 
ell (jx + 1; jy) will be represented by Sx. Likewise, 
ell (jx; jy � 1) will be represented by�Sy. In Fourier spa
e, this be
omes a multipli
ation:Sx(Ænjx;jy ) = nx2 +1Xkx=�nx2 +1 ny2 +1Xky=�ny2 +1 akxakye2�i(kx(jx+1)+kyjy)h= nx2 +1Xkx=�nx2 +1 ny2 +1Xky=�ny2 +1 akxakye2�ihkxe2�i(kxjx++kyjy)h (2.28)So if we 
onsider a single wavenumber 
omponent (kx; ky), then the shift operator Sx is just amultipli
ation by e2�ikx . The y-dire
tion shift is similar, as is the negative shift.To understand the behavior of our operator L(Æ), we will examine its e�e
t on a singlewavenumber 
omponent of the error. If we use the standard 5-point dis
retization of the Lapla
ian,thenL(Æ)jx;jy = nx2 +1Xkx=�nx2 +1 ny2 +1Xky=�ny2 +1 akxaky [1+ �h2 (e2�ihkx+e2�ihky+e�2�ihkx+e�2�hky�4)℄e2�i(kxjx+kyjy)h(2.29)So, the symbol is:�(kx; ky) = 1 + �h2 [e2�ihkx + e2�ihky + e�2�ihkx + e�2�hky � 4℄= 1 + �h2 [2
os(2�hkx) + 2
os(2�hky)� 4℄: (2.30)The quantity in bra
kets will never be positive, so to ensure j�j � 1 for all (kx; ky), we require
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ase, where 
os(2�hkx) = 
os(2�hky) = �1):1 + �h2 (�8) > �1� < h24 (2.31)to ensure that all Fourier modes of the error eventually de
ay to zero.Sin
e � is wavenumber-dependent, di�erent wavenumber 
omponents of the error will bedamped at di�erent rates. First, look at the slowly varying low-wavenumber 
omponents of theerror. Performing a Taylor expansion of (2.30) around (kx; ky) = (0; 0) yields:�(kx; ky)j(kx=0;ky=0) � 1� 4��2(k2x + k2y): (2.32)Sin
e � � h24 = O(h2), this be
omes�(kx; ky)j(kx=0;ky=0) � 1� Ch2; (2.33)where C is a 
onstant. So, the low-wavenumber error will de
ay slowly. On the other hand, if we lookat the highest wavenumber present, whi
h is (kx; ky) = (nx2 ; ny2 ) (remembering that h = 1nx = 1ny ),then 
os(2�hkx) = 
os(2�hky) = �1. In this 
ase,�(nx2 ; ny2 ) = 1� 8�h2 : (2.34)If � = h28 , then the highest wavenumber mode will be damped 
ompletely in one iteration. So, thismethod is extremely eÆ
ient at damping high-wavenumber 
omponents of the error, while dampinglower wavenumber 
omponents of the error mu
h more slowly.Note that in our present s
heme, attempting to a

elerate 
onvergen
e to steady stateby taking the maximum allowable value for the relaxation parameter, � = h24 , 
orresponds torepla
ing the value of Æjx;jy with the average of its four neighbors Æjx+1;jy ; Æjx�1;jy ; Æjx;jy+1; and
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Figure 2.4: Residual pattern whi
h 
auses stalled 
onvergen
e with point-Ja
obi iterationÆjx;jy�1. Unfortunately, straightforward appli
ation of this s
heme using the 5-point dis
retizationof the Lapla
ian operator su�ers from a lo
al de
oupling of solution values, resulting in a la
k of
onvergen
e for the 
ase of a high-wavenumber error (Figure 2.4) . In this 
ase, the values of +1and -1 simply 
ip ba
k and forth for ea
h iteration, and the method does not 
onverge to a steadystate solution.To avoid this problem, we instead use Gauss-Seidel with red-bla
k ordering (GSRB) it-eration. Instead of applying point-Ja
obi iteration to ea
h 
ell in turn, we apply two half-stepoperations. We divide the 
ells into two groups in a 
he
kerboard manner. First, we relax on the\red" 
ells (where i + j is even) to get an intermediate value Æn+ 12 . Then we relax on the \bla
k"
ells (where i+ j is odd) using Æn+ 12 , (Figure 2.5):Æn+ 12jx;jy = ( Ænjx;jy if i+ j oddÆnjx;jy + h24 ( Ænjx+1;jy+Ænjx�1;jy+Ænjx;jy+1+Ænjx;jy�1�4Ænjx;jyh2 �Resjx;jy ) if i+ j evenÆn+1jx;jy = 8><>: Æn+ 12jx;jy + h24 ( Æn+12jx+1;jy+Æn+12jx�1;jy+Æn+12jx;jy+1+Æn+12jx;jy�1�4Æn+12jx;jyh2 �Resjx;jy ) if i+ j oddÆn+ 12jx;jy if i+ j even :(2.35)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 27

Figure 2.5: \Red-Bla
k" ordering of 
ells for GSRB iterationThis solves the de
oupling problem for the error shown in Figure 2.4, instead repla
ing it with auniform (low-wavenumber) error of either 1 or -1.By itself, use of GSRB is not suÆ
ient to a

elerate 
onvergen
e signi�
antly over point-Ja
obi iteration, sin
e for low wavenumber 
omponents of the error, � = 1� O(h2). However, it isvery e�e
tive when 
ombined with multigrid a

eleration, whi
h is des
ribed in the next se
tion.2.2.3 Multigrid A

elerationWe have seen that GSRB iteration is very e�e
tive at damping high-wavenumber 
ompo-nents of the error, while it is less e�e
tive at redu
ing lower wavenumber 
omponents of the error. Infa
t, if � = h24 , high-wavenumber error is repla
ed by low-wavenumber error by the GSRB iteration.To a

elerate 
onvergen
e, we will employ multigrid a

eleration. This te
hnique, originally devel-oped in the 1960s by various resear
hers [24℄, has re
eived mu
h attention. A good introdu
toryreferen
e is Briggs [25℄ or Wesseling [69℄. Brandt [24℄ in
ludes a brief overview of the history ofmultilevel and multigrid methods. The basi
 
on
ept is that what 
onstitutes a \high" wavenum-



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 28ber is mesh-dependent. An error mode whi
h is a low-wavenumber error on a �ne mesh will be ahigh-wavenumber error on a 
oarser mesh. For a given �nite-di�eren
e grid 
, we 
an de�ne a seriesof 
oarsened grids 
k whi
h 
over the domain. In our 
onstru
tion, ea
h su

essive grid 
oarseningwill be a fa
tor of two 
oarser than the last, so that hk�1 = 2hk. Note that these 
oarsenings existindependently of any existing AMR grid hierar
hy.The strategy will be to employ a relaxation s
heme whi
h e�e
tively damps high-wavenumber
omponents of the error, su
h as GSRB, on a solution. Then, the solution is restri
ted to a 
oarsergrid using a restri
tion operator Rk�1k and relaxed on this grid; applying the relaxation on this meshwill damp a lower wavenumber error, whi
h has be
ome a high wavenumber error on this mesh. Thispro
ess is 
ontinued re
ursively until a 
oarsest level is rea
hed, where the problem 
an be solvedinexpensively. Then, the 
orre
tions on the 
oarser levels are interpolated ba
k into the �ner levelsolution with an inje
tion operator Ikk�1, followed by further relaxation on the �ne grid to eliminateany high-wavenumber error indu
ed by the interpolation of the 
oarser 
orre
tions. This 
y
le isthen repeated until the residual is suÆ
iently damped. The multigrid algorithm used in this work isoutlined in Figure 2.6. �1 is the number of smoothing iterations performed before 
oarsening, and�2 is the number of smoothing operations performed after the interpolation steps.Be
ause of the simpli
ity of the problems we are solving, we 
an use simple averaging for therestri
tion operator and pie
ewise 
onstant interpolation as an inje
tion operator. More 
ompli
ateds
hemes exist, su
h as Bla
k Box Multigrid [42℄, and might be more eÆ
ient, but sin
e the simplermethods have worked suÆ
iently well for our problem, we have not explored these options in thiswork. As an example, Figure 2.7 is a plot of residual as a fun
tion of multigrid iteration for solving
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MG()ReskMAX = �kMAX � LkMAX (�kMAX )do while (iter < maxIter and kReskMAXk < tol)iter++MGCy
le(�kMAX ; �kMAX )ReskMAX = �kMAX � LkMAX (�kMAX )end doend MGMGCy
le (�k; �k)for i = 1; �1�k  GSRB(�k; �k)end forResk = �� Lk(�k)if (k > 0 )�k�1 = Rk�1k (Resk)Æk�1 = 0MGCy
le (Æk�1; Resk�1)�k = �k + Ikk�1(Æk�1)for i = 1; �2�k  GSRB(�k; �k)end forelseBottomSolve (�0; �0)end ifend MGCy
le Figure 2.6: Pseudo
ode for a multigrid V-
y
le
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Max(Residual) vs. Work Units

GSRB

GSRB w/ MultiGrid

Max(Res)

# Work Units1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

0.00 50.00 100.00 150.00 200.00 250.00Figure 2.7: Max(Residual) vs. work units for a test problema sample problem in whi
h the right hand side is three Gaussian sour
es (shown in Figure 3.11) withhomogeneous Diri
hlet boundary 
onditions, solved on a 32x32 grid. A work unit is the amount ofwork equivalent to one iteration at the �nest level, negle
ting interpolation and averaging. The linelabeled \GSRB" is a plot of the in�nity-norm of the residual as a fun
tion of work units when simpleGSRB iteration is applied (in the 
ase of GSRB, 1 work unit is 1 GSRB iteration). The line labeled\GSRB w/ Multigrid" shows the maxnorm of residual when GSRB with multigrid a

eleration isapplied. In this 
ase, 2 GSRB iterations are performed on the way up and 2 more on the way ba
kdown on ea
h level. (In the notation of Figure 2.6, this 
orresponds to �1 = �2 = 2.) In this 
ase,ea
h multigrid 
y
le 
orresponds to 4 iterations on a 32x32 grid (two on the way down, and twoon the way up), 4 iterations on a 16x16 grid, 4 on a 8x8 grid, and so on. So, in this 
ase, ea
hmultigrid v-
y
le represents 5.33 work units. Even given the added expense of a multigrid 
y
le over



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 31that of simple iteration, it is obvious that multigrid a

eleration enables rapid 
onvergen
e for ourtest problem.2.3 The In
ompressible Euler EquationsThe evolution of invis
id 
uid 
ows 
an be des
ribed by the Euler equations:�u�t = �(u � r)u� 1�rp; (2.36)r � u = �1� D�Dt (2.37)where u is the 
uid velo
ity ve
tor (u; v)T , t is the time, � is the 
uid density, and p is the pressure.The notation DDt represents the material derivative, whi
h in an Eulerian frame of referen
e is:DDt = ��t + (u � r): (2.38)The evolution equation for a passively adve
ted s
alar in in
ompressible 
ow is (we have exploitedthe fa
t that r � u = 0): �s�t +r � (us) = 0 (2.39)For very low Ma
h number 
ows, the 
uid be
omes in
ompressible, whi
h implies that the materialderivative of the density is identi
ally zero. In this 
ase, the 
onservation of mass equation (2.37)redu
es to a 
onstraint on the velo
ity �eld, r � u = 0: (2.40)In our 
ase, we will make the further assumption that the density � is 
onstant (extension of thiswork to the variable density 
ase is straightforward). Sin
e it is a 
onstant, we will without loss ofgenerality assume that � = 1 identi
ally. The reader is referred to a standard text on 
uid me
hani
s(for example [13℄) for the 
onditions where these approximations are appropriate.
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tion MethodsWhile equations (2.36) and (2.40) form a well-posed set of di�erential equations for the
uid system, it is not 
lear how to 
onstru
t a numeri
al method for their solution. Enfor
ing the
onstraint (2.40) will be problemati
, and there is no evolution equation for the pressure.The proje
tion method, originally 
on
eived by Chorin [29℄ provides a way to evolve asolution to the in
ompressible Euler equations in time. It is based on the Hodge-Helmholtz de
om-position, whi
h uniquely de
omposes any ve
tor �eld w into a divergen
e-free part, ud, and thegradient of a s
alar r�: w = ud +r�:where ud � n = 0 on �
 (2.41)This is an orthogonal de
omposition. If we de�ne the inner produ
t:hud;r�i = Z
 ud � r�dV; (2.42)then hud;r�i = 0.The de
omposition 
an be performed by solving for � in the following partial di�erentialequation: r � r� = r �w (2.43)r� � n = w � n on �
:On
e we have solved for �, then we 
an extra
t ud by subtra
ting the gradient of � from the originalve
tor �eld: ud = w �r�: (2.44)
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an now de�ne a \proje
tion" operator P , whi
h given a ve
tor �eld will return thedivergen
e free pie
e ud: P (w) = ud: (2.45)To obtain the gradient pie
e, (I � P )(w) = r�; (2.46)where I is the identity. From equations (2.43) and (2.44),P (w) = �I �r(��1)r��w: (2.47)The proje
tion operator has several important properties. First, it is idempotent, i.e.P 2(w) = P (w). Se
ond, the proje
tion is symmetri
,hw; P (w)i = hP (w);wi;or P = P T . Also, it is a linear operator, and is norm-redu
ing, in the sense that kP (w)k � kwk.If we apply the proje
tion operator to the in
ompressible Euler equations (2.36) and (2.40),then the divergen
e 
onstraint (2.40) is no longer a separate equation { the 
onstraint is enfor
edby the proje
tion. If u(t) is divergen
e-free, then �u�t is also divergen
e-free, in whi
h 
ase, P (�u�t ) issimply �u�t . With this in mind, we 
an write:�u�t = P��(u � r)u�rp�: (2.48)We 
an then dis
retize this in time as:un+1 = un ��tP��(u � r)u�rp�= un ��tP��(u � r)u�; (2.49)
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e P (rp) = 0. From this, we 
an infer that the pressure is not an independent variable, butrather is determined by the requirements of the divergen
e 
onstraint. In the 
ontext of the Hodge-Helmholtz de
omposition (2.41), when we proje
t the update to the velo
ity �eld in (2.49), thegradient of the pressure and the r� term in (2.41) are the same. This is the basis for the proje
tionmethod. As formulated by Chorin [29℄ and extended by Bell, Colella, and Glaz [16℄, the proje
tionmethod is a predi
tor-
orre
tor method whi
h predi
ts an intermediate velo
ity �eld u�, whi
h isa �rst approximation of un+1. The intermediate velo
ity u� is then \proje
ted" onto the spa
e ofdivergen
e-free ve
tors to produ
e un+1.u� = un ��t(u � r)u (2.50)un+1 = P (u�)rp = (I � P )u�In this basi
 example, we have des
ribed how a proje
tion method for in
ompressible 
ow
an be formulated. Note that the details of the spatial and temporal dis
retizations are left unspe
-i�ed. There are many di�erent versions of the original proje
tion method in use, with a number ofdis
retization and algorithmi
 
hoi
es. These will be dis
ussed in more depth in subsequent se
tions.The basi
 issues whi
h must be dealt with are the dis
retization of the proje
tion operator Pand the dis
retization of (u �r)u used in the predi
tor step. We will use the approximate proje
tionof Lai [44℄, be
ause of its simpli�ed linear algebra. To 
ompute the adve
tive terms, we will use theformulation of Bell, Colella, and Glaz [16℄, as extended by Bell, Colella, and Howell [17℄, whi
h usesa lagged pressure gradient, and upwinding in the velo
ity predi
tor to a
hieve se
ond-order a

ura
yin time.
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Figure 2.8: Edge-
entered velo
ity �eld2.5 Dis
retizing the Hodge-Helmholtz Proje
tionIn the previous se
tion, the basi
 proje
tion method proposed by Chorin [29℄ was outlined,while the details of the spatial dis
retization was left unspe
i�ed. In this se
tion, we will outline theapproa
h we will take in 
onstru
ting a proje
tion method whi
h we will later extend to an AMRalgorithm.2.5.1 The Dis
rete Proje
tionOne possible dis
retization, known as the MAC (for Marker and Cell) [38℄ proje
tion, isa logi
al result of a edge-
entered velo
ity �eld uedge, in whi
h normal velo
ities are de�ned atea
h 
ell edge (see Figure 2.8). For this reason, we will also refer to the MAC dis
retization as anedge-
entered dis
retization. Given a velo
ity �eld de�ned at 
ell edges, we de�ne the 
ell-
entereddis
rete divergen
e as: (Du)i;j = ui+ 12 ;j � ui� 12 ;j�x + vi;j+ 12 � vi;j� 12�y : (2.51)
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retization is in
omplete without spe
i�
ation of the physi
al boundary 
onditions. Theboundary 
ondition on the edge-
entered velo
ity �eld will be the physi
al boundary 
ondition onthe normal velo
ity at �
. In the 
ase of solid walls, this will be u � n = 0 on �
.We 
an also de�ne an edge-
entered dis
rete gradient formula operating on a 
ell 
enteredvariable � as:(G�)i+ 12 ;j = (�i+1;j � �i;j�x ; �i+1;j+1 + �i�1;j+1 � �i+1;j�1 � �i�1;j�14�y )T (2.52)(G�)i;j+ 12 = (�i+1;j+1 + �i+1;j�1 � �i�1;j+1 � �i�1;j�14�x ; �i;j+1 � �i;j�y )T :Following the approa
h in [44℄, the boundary 
ondition on the gradient, regardless of the physi
alboundary 
ondition, is quadrati
 extrapolation of �, whi
h is equivalent to linear extrapolation ofG�. In this 
ase, both D and G are se
ond-order 
entered-di�eren
e operators. The operatorL = DG is the standard �ve-point Lapla
ian operator, and the appli
ation of the proje
tion isequally straightforward. First, solve L� = Duedge (2.53)for the 
ell-
entered �. From (2.43), it is apparent that the proper physi
al boundary 
ondition on �is ���n = w �n. For the 
ase of solid walls, this be
omes a homogeneous Neumann boundary 
ondition.So, when solving for �, we will use the ghost-
ell implementation of the Neumann boundary 
onditionin (2.4) Further dis
ussion of the boundary 
onditions for the proje
tion operator is presented inGresho and Sani [37℄, and in E and Liu [35℄. We then 
orre
t the edge-
entered velo
ity �eld withthe gradient of �: uedge = uedge �G�: (2.54)
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tion operator looks like:P = I �G(L)�1D: (2.55)While L is not generally invertible, it is invertible on the range of D. This dis
retization has theadvantages of se
ond-order a

ura
y, and it is simple to implement and generally well-behaved. Itis exa
t in the sense that it maintains in a dis
rete way the properties of the proje
tion operatoroutlined in Se
tion 2.4, i.e. P 2 = P and P = P T .Unfortunately, we would prefer to work with a 
ell-
entered dis
retization for u and (u �r)u rather than one whi
h is edge-
entered. We would like to take advantage of high resolutionmethods developed for the adve
tion-di�usion equations, whi
h generally require that variables be
ell-
entered. Also, in the presen
e of irregular geometries, Cartesian grid methods are mu
h easierto 
onstru
t with a 
ell-
entered dis
retization.2.5.2 Cell-
entered Dis
retization of the Proje
tionE�orts to formulate an exa
t dis
rete proje
tion for 
ell-
entered velo
ities were largelyunsu

essful. We 
an use the 
entered-di�eren
e operators(DCCu)i;j = ui+1;j � ui�1;j�x + vi;j+1 � vi;j�1�y (2.56)(GCC�)i;j = (�i+1;j � �i�1;j2�x ; �i;j+1 � �i;j�12�y )T : (2.57)Boundary 
onditions for these 
ell-
entered operators will be similar to those used in the edge-
entered 
ase. For the divergen
e operator, we will use the ghost-
ell representation of the physi
alboundary 
ondition. For solid walls, the homogeneous Diri
hlet boundary 
ondition u � n is repre-sented using (2.2). Sin
e � is still 
ell-
entered, physi
al boundary 
onditions for the gradient will
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δ δ δ δ δFigure 2.9: De
oupled grids 
reated by the exa
t DG operatorbe similar to those used in the edge-
entered dis
retization: we will use a quadrati
 extrapolationof � to �ll ghost 
ells before 
omputing the 
ell-
entered gradient operator.The 
orresponding proje
tion, following equations (2.51) through (2.55), isPCC + I �GCC(DCCGCC)�1DCC : (2.58)While this dis
retization produ
es an idempotent proje
tion, it is not well-behaved. The sten
ilfor DCCGCC produ
es a de
oupling of the grid, in whi
h there are four separate grids whi
h areonly 
oupled together through boundary 
onditions (Figure 2.9). This de
oupling has been shownto 
ause problems when there are sour
e terms present, and makes implementation of fast linearalgebra te
hniques su
h as multigrid diÆ
ult [44, 55℄. Also, Howell and Bell [41℄ report signi�
ant
ompli
ations when implementing the de
oupled sten
il a
ross 
oarse-�ne interfa
es.Strikwerda [61℄ proposed an exa
t proje
tion whi
h used non-symmetri
 operators. Whilethis eliminated the de
oupling of the grids, it resulted in more 
ompli
ated linear algebra whi
hproved 
omputationally expensive to implement and su�ered from a la
k of robustness in the presen
e



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 39of large density gradients [44℄.In response to these diÆ
ulties, a non-idempotent dis
retization of the proje
tion was devel-oped by Almgren, Bell, and Szym
zak [4℄. In this approa
h, we repla
e the badly-behaved DCCGCCoperator with an approximation to the Lapla
ian operator L whi
h has better properties. The ap-proximate proje
tion developed in [4℄ was based on a �nite-element formulation, whi
h resulted ina node-
entered pressure. The 
ell-
entered dis
retization we will use was developed by Lai [44℄. Inthis 
ase, we will employ se
ond-order approximations to all the operators involved, using the DCCand GCC from equations (2.56) and (2.57), but repla
ing the de
oupled Lapla
ian of DCCGCC witha more standard dis
retization. In our 
ase, we will use the standard �ve-point Lapla
ian operatorof (2.9), so the proje
tion operator will be:P = I �GCC(L)�1DCC (2.59)Analysis of this proje
tion operator by Lai [44℄ has shown that it is a se
ond-order a

urate operator.Note that the 
ell-
entered operators 
an also be 
onstru
ted with the edge-
entered op-erators using appropriate averaging from edges to 
ells and from 
ells to edges. First de�ne theappropriate averaging operators:(AvE!Cu)i;j = (ui+ 12 ;j + ui� 12 ;j2 ; vi;j+ 12 + vi;j� 122 )T ; (2.60)whi
h averages edge-
entered quantities onto 
ell 
enters, and(AvC!E�)i+ 12 ;j = �i+1;j + �i;j2 (2.61)(AvC!E�)i;j+ 12 = �i;j+1 + �i;j2 ;whi
h averages 
ell-
entered (ve
tor) quantities to 
ell edges. Then, the 
ell-
entered operators
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an be written as:DCCu = D(AvC!Eu) (2.62)and GCC� = AvE!CG�; (2.63)respe
tively. In this 
ase, we 
an rewrite the approximate proje
tion (2.59) as:P = I �AvE!CG(L)�1DAvC!E (2.64)The dis
retization of (2.64) is not idempotent, P 2 6= P , sin
e L 6= DCCGCC . Non-idempotent dis
retizations of the proje
tion are often referred to as approximate proje
tions. Stabilityand 
onsisten
y of the approximate proje
tion in (2.64) were shown in [44℄.2.5.3 Di�erent Proje
tion FormulationsIt was noted in the last se
tion that exa
t proje
tions for 
ell-
entered variables are notwell-behaved, and the approximate proje
tion was introdu
ed as an alternative. In pra
ti
e, the formof the proje
tion is not the only design 
hoi
e. We must also determine what is being proje
ted.There are four main variations. For idempotent dis
retizations of the proje
tion, the di�erentformulations would be equivalent. However, sin
e we are using an approximate proje
tion, 
hoi
e ofthe formulation to use has an impa
t on the performan
e of the method.We denote the dis
rete approximation to the adve
tive term (u � r)u as Nn+ 12 . The �rstand simplest version of the proje
tion is the pressure formulation, in whi
h the proje
tion will returnthe estimate of the latest pressure, through a proje
tion of the entire velo
ity �eld:1. u�� = un ��tNn+ 12



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 412. Solve Lpn+ 12 = 1�tD(u��)3. un+1 = u�� ��tGpn+ 12 :A variation on the �rst formulation is known as the pressure-in
remental formulation, sin
ethe proje
tion a
tually returns an in
rement to the pressure �eld, Æn:1. u� = un ��t(Nn+ 12 +Gpn� 12 )2. Solve LÆn = 1�tD(u�)3. un+1 = u� ��tGÆn4. pn+ 12 = pn� 12 + Æ.Note that we dis
riminate between the use of u� and u�� to denote the intermediate velo
ity �eld,in an attempt to be 
onsistent with previous de�nitions of u� in the literature, for example, those in[5, 44℄. We will use u� to refer to the intermediate velo
ity �eld whi
h in
ludes the e�e
t of rpn� 12 ,while we will use u�� to denote the intermediate velo
ity �eld 
omputed without the pressure term.In both of these algorithms, we are proje
ting a predi
tion of the new velo
ity �eld. If theold velo
ity un is divergen
e-free, it is also possible to simply proje
t the update to the velo
ity�eld, whi
h is the predi
ted �u�t . As before, this 
an be done in a pressure formulation:1. u�� = un ��tNn+ 122. Solve Lpn+ 12 = D(u���un�t )3. un+1 = u�� ��tGpn+ 12 ;or in a pressure-in
remental formulation:



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 421. u� = un ��t(Nn+ 12 +Gpn� 12 )2. Solve LÆn = D(u��un�t )3. un+1 = u� ��tGÆn4. pn+ 12 = pn� 12 + Æn:An analysis of these four formulations is presented by Rider [54℄, who 
on
luded that forapproximate proje
tions, it is better to proje
t the velo
ity �eld, rather than �u�t , be
ause of theerror due to the approximate proje
tion whi
h remains in un. This error 
an a

umulate over manytimesteps. Also, any errors in the initial state will remain undamped by the s
hemes whi
h proje
tu��un�t . However, both the single-grid algorithm of Lai [44℄, and the AMR algorithm of Almgren, etal. [5℄ proje
t u��un�t with su

ess.Our algorithm will be based on the pressure form of the proje
tion of u��, in large partbe
ause of the extra demands of the adaptive algorithm.2.6 Single-Grid AlgorithmIn this se
tion, we will present the single-grid version of the algorithm, whi
h will advan
ethe solution u and s, where s is a passively adve
ted s
alar 
on
entration �eld, from time tn to timetn+1. The new pressure pn+ 12 will also be 
omputed. It is assumed that at time tn we have the
urrent solution un and sn. Our dis
retization of (2.36) will be:un+1 = un ��t[(u � r)u℄n+ 12 ��tr�n+ 12 (2.65)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 43where � will be our approximation of the pressure. We will dis
retize the s
alar update equationas: sn+1 = sn ��t[r � (us)℄n+ 12 (2.66)whi
h will be our evolution equation for s.The basi
 stru
ture of the algorithm is a predi
tor-
orre
tor s
heme. We �rst predi
t anapproximation to the new velo
ity �eld, u��. This predi
ted velo
ity �eld will not, in general, satisfythe kinemati
 
onstraint on divergen
e. We then 
orre
t the velo
ity �eld by proje
ting u�� ontothe spa
e of ve
tor �elds whi
h satisfy the divergen
e 
onstraint.To 
ompute u�� and sn+1, we will need a set of edge-
entered \adve
tion velo
ities", whi
hare an approximation of (un+ 12i+ 12 ;j ; vn+ 12i;j+ 12 ). To 
ompute these, we predi
t upwinded approximationsfor the edge-
entered velo
ities at tn+ 12 , and then proje
t these velo
ities using an edge-
enteredproje
tion, whi
h ensures that our adve
tion velo
ities are divergen
e-free. To predi
t edge valuesat tn+ 12 , we use a Taylor series approximation, in whi
h we use (2.36) to repla
e the ��t term. Forexample: uL;n+ 12i+ 12 ;j = uni;j + �x2 �u�x + �t2 �u�t (2.67)= uni;j + �x2 �u�x + �t2 [�(u � r)u�rp℄n+ 12i;j= uni;j + 12(�x � u�t)�u�x � �t2 v �u�y � �t2 �p�xThis is an extrapolation from the left side of the edge. In order to 
ompute an upwinded solutionat the edge, we will also need an extrapolation from the right, whi
h will look like:uR;n+ 12i+ 12 ;j = uni+1;j � �x2 �u�x + �t2 �u�t (2.68)= uni+1;j � �x2 �u�x + �t2 [(u � r)u�rp℄n+ 12i+1;j



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 44

x
 i

x
 i+1

u
L

u
R

t

xx
 i+1/2Figure 2.10: Left and right extrapolated states= uni+1;j + 12(��x� u�t)�u�x � �t2 v �u�y � �p�xSee Figure 2.10. In two dimensions, we will also need to 
ompute top and bottom extrapolationsfor the (i; j + 12 ) edges. These are 
omputed analogously to the left and right states.We then use these adve
tion velo
ities to 
ompute updated values for the s
alar �eld sn+1,and the predi
ted velo
ity �eld u��, whi
h are then proje
ted, 
ompleting the update. It is also worthnoting that we use 
onve
tive, rather than 
onservative, di�eren
ing to 
ompute the adve
tion term(u � r)u be
ause the adve
tion velo
ities will not be divergen
e-free in our multilevel algorithm,although they are solenoidal in this single-grid version.2.6.1 Computing Adve
tion Velo
itiesFirst, we 
ompute approximate edge-
entered adve
tion velo
ities uedge by averaging the
ell-
entered un to edges: uedge = AvC!Eun: (2.69)Next, we use a Taylor expansion to extrapolate normal velo
ities to 
ell edges. For the



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 45(i + 12 ; j) edges, this will be (using the notation from [5℄ { the supers
ript L indi
ates that theextrapolation to edge (i+ 12 ; j) is from the left):unormi;j = 12(uedgei+ 12 ;j + uedgei� 12 ;j)~uL;n+ 12i+ 12 ;j = uni;j +min[ 12(1� unormi;j �t�x ); 12 ℄(ux)i;j � �t2�y (�uy)i;j (2.70)where ux is the undivided 
entered-di�eren
e in the normal dire
tion, in this 
ase,(ux)i;j = 12(uni+1;j � uni�1;j); (2.71)and �uy is the undivided upwinded transverse di�eren
e:vtani;j = 12(vedgei;j+ 12 + vedgei;j� 12 )(�uy)i;j = (uni;j � uni;j�1 if vtani;j > 0uni;j+1 � uni;j if vtani;j < 0. (2.72)Computing the right state is similar:~uR;n+ 12i+ 12 ;j = uni+1;j +max[ 12(�1� unormi;j �t�x );�12℄(ux)i+1;j � �t2�y (�uy)i+1;j : (2.73)Then, we 
hoose the upwind state:un+ 12i+ 12 ;j = 8>>><>>>: ~uL;n+12i+ 12 ;j if uedgei+ 12 ;j > 0~uR;n+ 12i+ 12 ;j if uedgei+ 12 ;j < 012 (~uL;n+ 12i+ 12 ;j + ~uR;n+ 12i+ 12 ;j ) if uedgei+ 12 ;j = 0 (2.74)Note that we do not in
lude the pressure term in the extrapolation. It is unne
essarybe
ause these velo
ities will be proje
ted. Also, unlike previous implementations of similar algo-rithms [5, 16, 44℄ we do not employ slope limiters when 
omputing ux and uy. Hildit
h [39℄ found
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h were developed to prevent os
illations in 
ompressible 
ows with sharpdis
ontinuities, are unne
essary for smooth, low Ma
h number 
ows.Extrapolation of normal y-dire
tion velo
ities is similar. On
e we have 
omputed a normaledge-
entered velo
ity �eld, we apply an edge-
entered proje
tion to ensure that our adve
tionvelo
ities will be divergen
e-free. This is straightforward { we �rst solve:L� = D(un+ 12 ); (2.75)and then 
orre
t the velo
ity �eld, uAD = un+ 12 �G� (2.76)We now have a set of edge-
entered adve
tion velo
ities at time tn+ 12 , whi
h we 
an use to
ompute the adve
tive terms in (2.65). Note that we have only 
omputed velo
ities normal to thefa
es, whi
h would be (uADi+ 12 ;j ; vADi;j+ 12 )T .2.6.2 S
alar Adve
tionWe also would like to adve
t a passive s
alar 
on
entration �eld with the 
ow. Sin
e wehave a divergen
e-free set of edge-
entered adve
tion velo
ities, this is straightforward.First, we predi
t edge-
entered upwinded values for sn+ 12 in the same way as for the velo
itypredi
tor. As before, we 
ompute values for ~sL;n+ 12 and ~sR;n+ 12 , and then 
hoose the upwind valuebased on the lo
al sign of uAD. unormi;j = 12(uedgei+ 12 ;j + uedgei� 12 ;j)~sL;n+ 12i+ 12 ;j = sni;j +min[ 12(1� unormi;j �t�x ); 12 ℄(sx)i;j � �t2�y (�sy)i;jwhere, as before, (sx)i;j = 12(sni+1;j � sni�1;j)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 47and (�sy)i;j = ( sni;j � sni;j�1 if vtani;j > 0sni;j+1 � sni;j if vtani;j < 0. (2.77)For the right state:~sR;n+ 12i+ 12 ;j = sni+1;j +max[ 12(�1� unormi;j �t�x );�12℄(sx)i+1;j � �t2�y (�sy)i+1;j :Then, 
hoose the upwind state:sn+ 12i+ 12 ;j =8>>><>>>: ~sL;n+ 12i+ 12 ;j if uedgei+ 12 ;j > 0~sR;n+ 12i+ 12 ;j if uedgei+ 12 ;j < 012 (~sL;n+ 12i+ 12 ;j + ~sR;n+ 12i+ 12 ;j ) if uedgei+ 12 ;j = 0 (2.78)Then, we 
an 
ompute the 
uxes: FSi+ 12 ;j = uADi+ 12 ;jsn+ 12i+ 12 ;j (2.79)FSi;j+ 12 = uADi;j+ 12 sn+ 12i;j+ 12 :Finally, the updated state sn+1 
an be 
omputed using the dis
rete analog to (2.66):sn+1i;j = sni;j ��t(FSi+ 12 ;j � FSi� 12 ;j�x + FSi;j+ 12 � FSi;j� 12�y ): (2.80)2.6.3 Velo
ity Predi
torOn
e we have the divergen
e-free adve
tion velo
ities, we 
an 
ompute an approximationof Nn+ 12 = [(u � r)u℄n+ 12 . Although the adve
tion velo
ities are dis
retely divergen
e-free, whi
hmeans that 
onservative di�eren
ing 
ould be used to 
ompute Nn+ 12 , we will instead use 
onve
tivedi�eren
ing be
ause in the multilevel 
ase, the adve
tion velo
ities will not, in general, be dis
retelydivergen
e-free, for reasons whi
h will be explained in Se
tion 4.4.2.First, we must re-predi
t edge-
entered velo
ities as in Se
tion 2.6.1, this time using theproje
ted uAD rather than AvC!E(un), whi
h was used in Se
tion 2.6.1. To save some work, we



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 48
an re-use the normal velo
ities uAD as predi
ted velo
ities uhalf . This means that we only must
ompute the tangential edge-
entered predi
ted velo
ities. To 
ompute vhalfi+ 12 ;j , for example, weextrapolate in the same way as we did for uhalfi+ 12 ;j , in this 
ase in
luding G� from (2.52) to representthe e�e
ts of the edge-
entered proje
tion:unormi;j = 12(uADi+ 12 ;j + uADi� 12 ;j)~vL;n+ 12i+ 12 ;j = vni;j +min[ 12(1� unormi;j �t�x ); 12℄(vx)i;j � �t2�y (�vy)i;j (2.81)where (vx)i;j = 12(vni+1;j � vni�1;j); (2.82)and vtani;j = 12(vADi;j+ 12 + vADi;j� 12 )(�vy)i;j = ( vni;j � vni;j�1 if vtani;j > 0vni;j+1 � vni;j if vtani;j < 0. (2.83)For the \right" state,~vR;n+ 12i+ 12 ;j = vni+1;j +max[ 12(�1� unormi;j �t�x );�12℄(vx)i+1;j � �t2�y (�vy)i+1;j : (2.84)Then we 
an 
hoose the upwind state:vn+ 12i+ 12 ;j =8>>><>>>: ~vL;n+ 12i+ 12 ;j if uADi+ 12 ;j > 0~vR;n+ 12i+ 12 ;j if uADi+ 12 ;j < 012 (~vL;n+ 12i+ 12 ;j + ~vR;n+ 12i+ 12 ;j ) if uADi+ 12 ;j = 0 : (2.85)Finally, we add the pressure gradient term:vhalfi+ 12 ;j = vhalf �G�: (2.86)= vhalf � �i+1;j+1 + �i�1;j+1 � �i+1;j�1 � �i�1;j�14�y :
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e we have the edge-
entered predi
ted velo
ities uhalf , we 
an 
ompute the adve
tiveterms. First, we 
ompute a 
ell-
entered \adve
tion" velo
ity uAD�CC :uAD�CC = AvE!CuAD:Then, [(u � r)u℄n+ 12i;j = uAD�CCi;j (uhalfi+ 12 ;j � uhalfi� 12 ;j)�x + vAD�CCi;j (uhalfi;j+ 12 � uhalfi;j� 12 )�y (2.87)[(u � r)v℄n+ 12i;j = uAD�CCi;j (vhalfi+ 12 ;j � vhalfi� 12 ;j)�x + vAD�CCi;j (vhalfi;j+ 12 � vhalfi;j� 12 )�yFinally, we 
an now 
ompute u��:u��i;j = uni;j ��t[(u � r)u℄n+ 12i;j (2.88)v��i;j = vni;j ��t[(u � r)v℄n+ 12i;j2.6.4 Proje
tionOn
e we have 
omputed the intermediate velo
ity u��, all that remains is to proje
t it.Using the approximate proje
tion of Se
tion 2.5.2, this is straightforward. First, we solveL�n+ 12 = 1�tDCC(u��) (2.89)using the multigrid a

elerated algorithm des
ribed in Se
tion 2.2.3. Then, we use this pressure to
orre
t the velo
ity �eld onto the spa
e of ve
tor �elds whi
h satisfy the divergen
e 
onstraint:un+1 = u�� ��tGCC�n+ 12 : (2.90)2.7 FiltersA dis
ussion of proje
tion methods would be in
omplete without mentioning �lters. Inmu
h of the literature on proje
tion methods, �ltering is used to remove non-physi
al velo
ity
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Figure 2.11: Non-physi
al velo
ity �eld preserved by approximate proje
tionmodes that the approximate proje
tion will not remove. As an example, 
onsider the velo
ity �eldin Figure 2.11. While it is obvious upon inspe
tion that this velo
ity �eld is not solenoidal, it is inthe null-spa
e of the DCC operator, so it is not removed by our proje
tion. Lai [44℄, found that thesenon-physi
al modes 
aused problems with rea
ting 
ow. Rider [53℄ presents a survey of di�erent�lter formulations, as well as numeri
al experiments whi
h point to the ne
essity of �lters for someappli
ations, to remove errors whi
h a

umulate and degrade the solution.While we have implemented the �lters mentioned in [53℄ in our single-grid versions of the
ode, developing a multilevel �lter proved diÆ
ult, as will be des
ribed in Se
tion 4.7. Also, we sawno apparent degradation in our solution without �lters. So, the de
ision was made to defer �lteringuntil it proved ne
essary. Sin
e we do not use �ltering in our adaptive algorithm, we will not in
lude�ltering in our single-grid algorithm either. The reader is referred to [39, 44, 53℄ for more involveddis
ussions on the role of �ltering in proje
tion methods.
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Figure 2.12: Initial vorti
ity distribution for shear layer problem2.8 Convergen
e of the AlgorithmTo demonstrate the 
onvergen
e and a

ura
y of the single-grid algorithm, solutions toa doubly periodi
 shear layer were 
omputed on a su

ession of �ner and �ner grids. The initial
onditions were: u(x; y) = ( tanh(�s(y � 14 )) if y � 12tanh(�s( 34 � y)) if y > 12 (2.91)v(x; y) = Æssin(2�x)with �s = 42:0 and Æs = 0:05. This is the same problem studied by Brown and Minion [26℄, andrepresents a shear layer whi
h is between their \thi
k" and \thin" 
ases (Figure 2.12).To test the 
onvergen
e of the single-grid algorithm, the doubly-periodi
 vortex test 
asewas run on 32 � 32; 64� 64; 128� 128, and 512� 512 grids. Then, the error in ea
h 
omputationwas estimated by averaging a �ner solution onto the next 
oarser solution:E2h = Av(uh)� u2h (2.92)
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(a) (b)

(
) (d)Figure 2.13: Doubly Periodi
 Shear layer vorti
ity at t = 0:5 on (a) 64�64 grid, and (b) 128�128 grid,and at t = 1:0 on (
) 64�64 grid, and (d) 128�128 grid. Note formation of spurious vorti
es in solution in64�64 solution. Deformation of the vorti
ity 
ontours near the edges in the 64�64 solution is an artifa
t ofthe 
ontour plotter.
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onvergen
e rate p 
an then be estimated as:p � 1ln(2) ln(E2hEh ) (2.93)The rate of 
onvergen
e was estimated for both 
omponents of velo
ity. The results are tabulatedin Table 2.1, for L1, L2, and in�nity-norms for time t = 0:5 and in Table 2.2 for L1, L2, andin�nity-norms for time t = 1:0. As 
an be seen, both 
omponents of velo
ity appear to 
onvergeat se
ond-order rates. The only ex
eption appears to be the in�nity-norm of the y�velo
ity (Table2.2(
)), whi
h shows a marked degradation in 
onvergen
e. It is believed that in this 
ase, theappearan
e of the spurious vortex in the under-resolved 
ases is a�e
ting these results, sin
e thespurious vortex is present in the 
oarser 
ases, but not in the �ner 
ases. While this is not a strongenough e�e
t to be seen in more global L1 and L2 norms, it is seen in the lo
al L1 norm. For thesolution at t = 0:5, the spurious 
ow feature has not yet appeared in a strong enough fashion toa�e
t the 
onvergen
e results.
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h = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.0107698 0.0026623 0.000559159Rate || 2.02 2.25Error(v) 0.00703588 0.0017225 0.000369297Rate || 2.03 2.22(a) L1 normh = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.0214418 0.00518821 0.0011087Rate || 2.05 2.23Error(v) 0.00948762 0.00250181 0.000588511Rate || 1.92 2.09(b) L2 normh = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.105859 0.0282326 0.00760067Rate || 1.91 1.89Error(v) 0.0405071 0.0160055 0.004045Rate || 1.34 1.98(
) L1 normTable 2.1: Convergen
e for velo
ity, time = 0.5



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 55
h = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.0594146 0.0129793 0.00244816Rate || 2.19 2.41Error(v) 0.0549152 0.0136606 0.00250969Rate || 2.01 2.44(a) L1 normh = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.0842932 0.0211447 0.00473912Rate || 2.00 2.16Error(v) 0.0661976 0.0195002 0.00454566Rate || 1.76 2.10(b) L2 normh = 164 ! 1128 1128 ! 1256 1256 ! 1512Error(u) 0.40088 0.133916 0.0273512Rate || 1.58 2.29Error(v) 0.200489 0.0975586 0.0329477Rate || 1.04 0.69(
) L1 normTable 2.2: Convergen
e for velo
ity, time = 1.0



56
Chapter 3Adaptive Solutions to Poisson'sEquation

This 
hapter will des
ribe the formulation of a Poisson solver using the 
ell-
entered AMRmethodology. Some experimentation was performed to �ne-tune the algorithm with an eye toward
onstru
ting the proje
tion method we will eventually use to solve the Euler equations. Sin
e proje
-tion methods generally involve solving an ellipti
 equation for the pressure to enfor
e the divergen
e
onstraint, this will be an integral part of the 
omplete adaptive algorithm for the in
ompressibleEuler equations.3.1 AMR NotationIn this work, we will employ the blo
k-stru
tured lo
al re�nement strategy of Berger andColella [18℄, in whi
h a hierar
hy of nested re�nements is employed.All 
omputations will start with a single base grid, whi
h will be as 
oarse as possible,in order to best exploit the advantages of adaptivity. This grid will span the entire 
omputationaldomain, whi
h we will denote as 
0. The base grid will have nx 
ells in the x-dire
tion and ny
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ells in the y-dire
tion; these 
ells will be indexed (i0; j0) = (0::n0x � 1; 0::n0y � 1), and will have 
ellspa
ing (h0;x; h0;y) = (Lxn0x ; Lyn0y ).Coarse 
ells will then be tagged for re�nement based on some estimate of the error in thesolution. (Error estimation will be dis
ussed in more depth in Chapter 5.) Logi
ally re
tangulargrids of re�ned 
ells will then be used to 
over these tagged 
ells. Cells in these re�ned pat
hes willuniformly be a fa
tor of nref �ner than the 
ells in the 
oarse grid, with grid spa
ing (hfinex ; hfiney ) =( 1nref h0;x; 1nref h0;y). We will denote the union of these re�ned grids as a level, whi
h is indi
ative ofthe fa
t that all the grids on this level are at a given level of re�nement.If additional re�nement is ne
essary, additional re�nement 
an be added by re�ning pat
hesof the already-re�ned grids, resulting in a set of still-�ner grids nested within the initial re�ned gridswhi
h then make up a new, �ner level. This pro
ess of nested re�nement 
an be 
ontinued until thesolution is well resolved in all regions of the domain or a maximum level of re�nement is rea
hed.For example, see Figure 1.2, whi
h depi
ts a sample 
on�guration of nested re�nements.The 
olle
tion of di�erent levels of re�nement makes up a hierar
hy of levels. We will indexthese levels as ` = 0::`max, where 0 is the 
oarsest level (the base grid), and `max is the �nest level.Ea
h level ` + 1 will be a fa
tor of nr̀ef �ner in spatial resolution than level `. While in generalnr̀ef 
ould be any integer, we will restri
t the re�nement ratio to be a power of two to fa
ilitate theuse of multigrid a

eleration, whi
h was presented in Se
tion 2.2.3. The re�nement ratio may varybetween di�erent levels; for example, n1ref 
ould be 2 while n2ref 
ould equal 4.We will denote by 
` the union of grids making up the `th level of re�nement. In general,
` will be made up of more than one re
tangular pat
h, or grid; these grids will be subregions of
` and will be indexed as 
`;k where k = 0:::ng̀rids � 1. So, for example, the level 1 domain 
1 will
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onsist of the union of the level 1 grids, whi
h will 
ontain the 
ells whi
h have been re�nedby a fa
tor of n0ref from the base level. Note that the grids whi
h make up a level need not be
ontiguous. In this implementation, grids at the same level of re�nement will not overlap, althoughthere is no reason why they 
ould not do so.We expe
t that the solution on re�ned grids is more a

urate than the solutions on 
oarserlevels. This leads to the 
on
epts of valid regions and the 
omposite solution. The re�ned pat
heswill overlay part of the original 
oarse 
0 grid. We will de�ne the valid region of the level 0 grids tobe those areas whi
h are not 
overed by �ner grids:
0valid = 
0 � P (
1) (3.1)where P (
1) is the proje
tion of the level 1 grids onto the level 0 grid { the level 0 
ells whi
h are
overed by level 1. Extending this to the entire multilevel hierar
hy of grids, we 
an say that thevalid region will be the union of all 
ells not 
overed by re�nement:
valid = `max[̀=0 
` � P (
`+1) (3.2)= `max[̀=0 
v̀alidIn 
ontrast, we will de�ned the 
overed region as the part of a given level whi
h is 
overed by are�ned grid: 

̀overed = 
` � 
v̀alid (3.3)= P (
`+1)On ea
h level, the valid region will also 
ontain edges. Be
ause many quantities are edge-
entered, we will also need to di�erentiate between valid and 
overed edges. On a level `, all edges
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`, whether 
overed by re�nement or not, will be denoted by 
`;�. The valid edges, whi
h we willdenote by 
`;�valid, will be the 
ell edges of valid level ` 
ells whi
h are not 
overed by �ner edges.This will 
onsist of all edges of level ` 
ells in the valid region 
v̀alid (in
luding the outer edge �
`)with the ex
eption of the outer edges of the proje
tion of the next �ner level ` + 1, whi
h will be
onsidered to be 
overed by �
`+1, the boundary of 
`+1.We will de�ne the 
omposite solution as the union of solutions on ea
h level's valid region.In other words, the solution will only 
arry any meaning in the �nest 
ells in a parti
ular lo
ation;
ells whi
h have been 
overed by �ner grids will not be 
onsidered to 
ontain valid information inthe 
omposite solution.However, in many 
ases, we will want to organize our 
omputations on a level-by-level basis,
omputing on ea
h grid as if it were a single 
omplete re
tangle (to take advantage of ve
torization,for example). For this reason, there will often be solution variables whi
h exist for all 
ells in agiven level, regardless of whether they are 
overed by �ner 
ells or not. The solution de�ned simplyon a level, regardless of whether or not it is 
overed by a re�ned pat
h, will be known as the levelsolution. In many 
ases, the level solution in regions whi
h are 
overed by re�nement will just bethe spatially averaged �ner-level solution.As in Se
tion 2.1, variables 
an have di�erent 
enterings. On
e again, we 
an have 
ell-
entered or edge-
entered variables, whi
h 
an then be either 
omposite variables, or level variables.Composite variables are de�ned over the entire hierar
hy of grids, in the valid regions of ea
h grid.On the other hand, level variables exist on ea
h level, in both the valid and 
overed regions on ea
hgrid. For a 
ell-
entered variable �, the level variable is de�ned on all of 
`, and will be denoted



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 60by �`. Variables whi
h are 
omposite variables, whi
h only have meaning on the union of validregions on all levels, will be denoted by the supers
ript 
omp, so �
omp is de�ned on the union ofvalid regions over all the levels whi
h make up the hierar
hy of grids. It will also be useful to de�ne�
omp;`, whi
h is the 
omposite variable �
omp on the valid region of level `, 
v̀alid. For edge-
enteredvariables, the notation will be similar. In parti
ular, for an edge-
entered ve
tor �eld F, whi
h isde�ned at normal edges (see Figure 2.8), F` will be a level variable, de�ned at all 
ell edges on level`, 
`;�, while the 
omposite edge-
entered �eld F
omp will be de�ned on the set of valid edges 
�valid:F
omp = `max[̀=0 F
omp;`valid :In our re�nement s
heme, noti
e that 
ell edges in 
overed regions are always overlain by�ne-
ell edges, in 
ontrast to 
ell 
enters. In parti
ular, the edges making up the outer edges ofre�ned grids will overlay the 
oarse-
ell edges whi
h make up the outer edges of the proje
tion ofthe re�ned pat
h. This edge will take on parti
ular importan
e, be
ause it is the lo
ation of thedis
ontinuity in grid spa
ing. On one side of this edge, the valid solution is on a re�ned grid; onthe other side, the valid solution has 
oarse-level resolution. For this reason, we will 
all this the
oarse-�ne interfa
e. We expe
t that the dis
ontinuity in grid spa
ing will 
ause 
ompli
ations inour dis
retization, and so we expe
t that in regions neighboring the 
oarse-�ne interfa
es spe
ial
are will be required.3.1.1 Proper Grid GenerationTo simplify boundary 
onditions and other 
ommuni
ation between the solution at di�erentlevels of re�nement, we will impose two requirements on the multilevel hierar
hy of grids. First, wewill require that any 
oarse 
ell undergoing re�nement be re�ned 
ompletely; partial re�nement as
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Proper Refinement
          Of Cells

 Improper Refinement
            Of CellsFigure 3.1: Improper Re�nementshown in Figure 3.1 will not be allowed. Se
ond, we will require that the re�ned grids be properlynested. For any re
tangular pat
h on level `, the boundary may be:1. a physi
al boundary where �
` 
oin
ides with the physi
al boundary �
,2. a shared boundary with another grid at level ` (referred to as a �ne-�ne interfa
e),3. a 
oarse-�ne interfa
e with the next-�nest level `� 1,4. a mixture of these.In parti
ular, we will not allow �
` to tou
h a valid level `0 
ell for `0 < `� 1; it may only see thephysi
al boundary, other grids at this level, or the next-
oarsest re�nement level. See Figure 3.2.Cells whi
h have been tagged for re�nement will be grouped together using the 
lusteringalgorithm of Berger and Rigoutsos [20℄ (see Se
tion 5.4.1) to form eÆ
ient blo
k-stru
tured gridswhi
h 
over the \tagged" regions. Grid eÆ
ien
y is de�ned as the per
entage of 
ells whi
h arere�ned whi
h were a
tually tagged for re�nement.�grid = Number of tagged 
ellsNumber of 
ells a
tually re�ned (3.4)
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Properly Nested at Physical Boundary

NOT Properly Nested at Interior BoundaryFigure 3.2: Illustration of the proper nesting requirement
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ity, all level ` 
ells will share a global index spa
e similar to that of level 0. Forlevel 1 (the �rst level of re�nement) this will be indexed (0::(n0refn0x)� 1; 0::(n0refn0y)� 1). This willsimplify 
ommuni
ation of information between the 
oarse and �ne levels. Conversion between thelevel 0 and level 1 indi
es is straightforward. A 
oarse 
ell (i0; j0) will 
orrespond to the �ne 
ells(i1; j1) = ((n0ref i0) + k; (n0ref j0) + l) for 0 � k; l � (n0ref � 1):Conversely, a �ne 
ell (i1; j1) is 
ontained by the 
oarse 
ell(i0; j0) = ( i1n0ref ; j1n0ref );where integer division with rounding down is used.3.1.2 Composite Operators and Level OperatorsSin
e we have de�ned 
omposite and level variables, we expe
t that we will need to de�ne
orresponding 
omposite and level operators, whi
h a
t on these variables.In general, a 
omposite operator will a
t on the 
omposite solution on the multilevel hier-ar
hy of grids. It will only 
ompute values of the operator in the valid regions of a level. De�nitionof a 
omposite operator will generally in
lude spe
ial dis
retizations at 
oarse-�ne interfa
es to dealwith the dis
ontinuity in grid spa
ing in a reasonable way. On the other hand, a level operator willa
t on level variables, and as su
h will be essentially a single-grid operator whi
h does not needto know about lo
al re�nements. It will be de�ned for all 
ells on a level, whether they are validor 
overed by re�nement. Note, however, that if the level operator is being applied to a re�nedlevel (` > 0), that it may need boundary 
onditions from the next 
oarser level. In general, ourapproa
h will be to enfor
e boundary 
onditions with 
oarser levels through the use of ghost 
ells(Se
tion 2.1.1). If ghost 
ells around the grids on a re�ned level are �lled with appropriate values
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ation of the operator, then the level operator 
an be de�ned without knowledgeof the level's position in the hierar
hy of levels. For instan
e, in many 
ases we will want to useinterpolated 
oarse-level solution values as boundary 
onditions for �ne level operators. By �rst�lling �ne-level ghost 
ells with interpolated data, then applying the level operator, we 
an separatethe implementation of the operator from the details of the AMR implementation.In general, implementation of the level gradient, divergen
e, and Lapla
ian operators willbe the same as those de�ned in Chapter 2, with the addition of 
oarse-�ne boundary 
onditionsfrom 
oarser levels. We will dis
uss only the simple gradient, divergen
e, and 
onstant-
oeÆ
ientLapla
ian operators; the extension to more 
ompli
ated operators is generally straightforward (see,for example, Betten
ourt [22℄ or Propp [51℄.)To de�ne 
omposite operators, we will extend the de�nitions of the gradient, divergen
e,and Lapla
ian operators from the edge-
entered dis
retizations des
ribed in Se
tion 2.5.1.For Poisson's problem, we are solvingL� = r � r� = �: (3.5)So, we will need to de�ne a 
omposite Lapla
ian operator. To simplify this, we will de�ne theLapla
ian as the divergen
e of the gradient, and then develop appropriate 
omposite divergen
e andgradient operators whi
h 
an then be in
orporated into the de�nition of the Lapla
ian operator.Gradient and Coarse-Fine InterpolationTo de�ne a 
omposite gradient operator, we will extend the edge-
entered gradient de�nedin (2.52) to the 
ase of a multilevel hierar
hy of grids. The 
omposite gradient will be de�ned onthe valid edges of a level `, 
`;�valid. On
e we have de�ned the 
omposite gradient, we will then de�nethe level-operator gradient as a simple extension of the 
omposite gradient operator.
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h are not 
oarse-�ne interfa
es, de�nition of the gradient is straightforward:G
omp(�)xi+ 12 ;j = �i+1;j � �i;j�x (3.6)G
omp(�)yi;j+ 12 = �i;j+1 � �i;j�yFor 
omputation of G� at a 
oarse-�ne interfa
e, we will interpolate values for � usingboth 
oarse and �ne values. As an example, Figure 3.3 shows a 
oarse-�ne interfa
e with the 
oarse
ells to the right of the interfa
e and the �ne 
ells to the left. To 
ompute the x-
omponent of thegradient a
ross the interfa
e, we will �rst interpolate a value into the ghost 
ell of the �ne grid (the
ir
led X's in Figure 3.3), and then use this interpolated value to 
ompute a gradient:Gtop = �I;topi+1;jtop � �i;jtop�x (3.7)Gbottom = �I;boti+1;jbot � �i;jbot�xTo 
ompute �I , we �rst use quadrati
 interpolation parallel to the 
oarse-�ne interfa
e usingnearby 
oarse 
ells (marked as open 
ir
les in Figure 3.3) to get the intermediate points (markedwith solid 
ir
les in Figure 3.3). Using this intermediate value along with two �ne grid 
ells (markedwith X's in Figure 3.3), another quadrati
 interpolation is used normal to the interfa
e to get theappropriate ghost 
ell value (shown as 
ir
led X's in the �gure).We will hen
eforth denote this 
oarse-�ne interpolation operator as I(�fine; �
rse):�` = I(�`; �`�1) on �
` (3.8)will mean that the ghost 
ell values for � on level ` along the 
oarse-�ne interfa
e with level ` � 1are 
omputed using this type of 
oarse-�ne interpolation.
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Figure 3.3: Interpolation at a 
oarse-�ne interfa
e
x
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Figure 3.4: Modi�ed interpolation sten
il: Sin
e the left 
oarse 
ell is 
overed by a �ne grid, use shifted
oarse grid sten
il (open 
ir
les) to get intermediate values (solid 
ir
les), then perform �nal interpolation asbefore to get \ghost 
ell" values (
ir
led X's). Note that to perform interpolation for the verti
al 
oarse/�neinterfa
e, we will need to shift the 
oarse sten
il down.
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e we will want to use this type of quadrati
 interpolation wherever possible to link the
oarse- and �ne-grid solutions, we must use di�erent interpolation sten
ils for spe
ial 
ases like �negrid 
orners (Figure 3.4). If one of the 
oarse grid 
ells in the usual sten
il is 
overed by a �nergrid, we then shift the sten
il so that only 
oarse 
ells in (

�P (
f )) are used in the interpolationparallel to the 
oarse-�ne interfa
e. If a suitable 
oarse grid sten
il does not exist, we then drop theorder of interpolation and use whatever 
oarse 
ells we do have.De�nition of the level-operator gradient G` is straightforward. We will simply extend thede�nition of G
omp, whi
h is only de�ned on the valid edges on a level 
�;`valid, to all edges on thelevel, 
`;�. Spe
i�
ally, away from 
oarse-�ne interfa
es with the 
oarser level `� 1, the 
ompositeoperator will use the same sten
il as the edge-
entered gradient des
ribed in (2.52). At the 
oarse-�ne interfa
e with level `�1, we will use the same 
oarse-�ne boundary 
ondition as was used for the
omposite gradient. The 
oarse-�ne interpolation operator I(�`; �`�1) is used to 
ompute ghost-
ellvalues, whi
h we 
an then use in the usual edge-
entered gradient sten
il.Divergen
e and Re
ux Divergen
eWe will also need 
omposite and level divergen
e operators. We will de�ne the 
ompositedivergen
e operator as a multilevel analog to the edge-
entered divergen
e of (2.51), whi
h is a
ell-
entered divergen
e of edge-
entered 
uxes.For a 
ell in whi
h none of the four edges are 
oarse-�ne interfa
es, this redu
es to thenormal edge-
entered D operator:(D
ompF)i;j = F xi+ 12 ;j � F xi� 12 ;j�x + F yi;j+ 12 � F yi;j� 12�y : (3.9)Note that for a 
ell in whi
h none of the four edges are 
oarse-�ne interfa
es, this implies that theLapla
ian operator (whi
h is the 
omposite divergen
e applied to the 
omposite gradient) will redu
e
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ian operator, whi
h we would expe
t.On the �ne side of the 
oarse-�ne interfa
e, we assume that we have already 
omputed anedge-
entered 
ux on the 
oarse-�ne interfa
e. For instan
e, in the 
ase of the Lapla
ian operator,we have de�ned gradients on the 
oarse-�ne interfa
es using the quadrati
 interpolation I to de�neboundary 
onditions with the 
oarse level. So, we 
an use (3.9) to 
ompute the 
omposite divergen
efor these 
ells as well. On the �ne side of the 
oarse-�ne interfa
e, this will imply that the 
ompositeLapla
ian on
e again redu
es to the normal �ve-point Lapla
ian operator, using the interpolatedghost 
ell values �I . This also implies that the level-operator divergen
e D`, whi
h will have noknowledge of any �ner levels, will simply be the edge-
entered divergen
e de�ned in (2.51) appliedto all 
ells and edges (valid or 
overed) in 
`.For 
ells on the 
oarse side of a 
oarse-�ne interfa
e, we will repla
e the 
oarse-grid 
uxon the 
oarse-�ne interfa
e with the arithmeti
 average of the �ne-grid 
uxes. In the 
ase of the
oarse-grid 
ell in Figure 3.3, the divergen
e operator will be:(D
ompF)i;j = F xi+ 12 ;j � hF x;fineii� 12 ;j�x + F yi;j+ 12 � F yi;j� 12�y ; (3.10)where hF x;fineii� 12 ;j is the arithmeti
 average of the 
uxes on the �ne-grid edges whi
h 
over 
oarseedge (i� 12 ; j) (whi
h is part of the 
oarse-�ne interfa
e with the �ne level).Assume that the 
oarse-grid 
uxes F
rse 
an be extended to all edges in 
`;�, in
ludingthose 
overed by the 
oarse-�ne interfa
e edge between 
` and 
`+1. Adding and subtra
ting Fx;
rsei� 12 ;j�xto the right hand side of (3.10), we get:(D
ompF)i;j = F xi+ 12 ;j � F x;
rsei� 12 ;j�x � hF x;fineii� 12 ;j � F x;
rsei� 12 ;j�x + F yi;j+ 12 � F yi;j� 12�y= (D
rseF
rse)i;j � 1�x�hF x;fineii� 12 ;j � F x;
rsei� 12 ;j �; (3.11)
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rse is the 
oarse-level edge-
entered divergen
e operator. By doing this, we have split the
omposite divergen
e on the 
oarse side of the 
oarse-�ne interfa
e into the 
oarse-level operator plusa 
orre
tion for the e�e
t of the �ne grid. This will prove to be very useful in our implementation,so we will de�ne some asso
iated notation.As in (3.11), it will often be ne
essary to 
ompute the di�eren
e between 
oarse and av-eraged �ne edge-
entered values on 
oarse-�ne interfa
es. To do this eÆ
iently, we de�ne a 
uxregister ÆF `+1, whi
h will store the di�eren
e in the edge-
entered quantity F on the 
oarse-�neinterfa
e between level ` and `+1. ÆF `+1 will be owned by the �ne level `+1 be
ause it representsinformation on the boundary of level `+ 1. However, it will also have 
oarse-level (`) grid spa
ingand indexing be
ause it will generally be used to 
orre
t 
oarse-grid values with the appropriatelyaveraged �ne-grid values. See Figure 3.5. Note that the sign of the 
ontributions to ÆF is su
hthat the 
ux register represents the amount whi
h must be added to the 
oarse grid 
uxes to ensureagreement with the �ne grid 
uxes.If we de�ne the re
ux divergen
e DR as the 
oarse-level edge-
entered divergen
e appliedto edge-
entered 
uxes on the 
oarse-�ne interfa
e, then we 
an re-write (3.11) as(D
ompF )i;j = (D`F`)i;j +DR(ÆF `+1)i;j ; (3.12)where ÆF `+1 = �F ` + hF `+1i on �
`+1: (3.13)For a 
oarse 
ell to the right of a 
oarse-�ne interfa
e (as in Figure 3.3),DR(ÆF `+1)ij = � 1�x (ÆF `+1)i� 12 ;j : (3.14)
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Figure 3.5: Flux register along �
1: the dashed lines represent the edge-
entered 
ux register de�nedalong the 
oarse-�ne interfa
e. Note that the 
ux register has 
oarse-grid spa
ing.For a 
oarse 
ell to the left of a 
oarse-�ne interfa
e,DR(ÆF `+1)ij = 1�x (ÆF `+1)i+ 12 ;j : (3.15)The y-dire
tion is similar. Note that DR only a�e
ts the set of 
oarse 
ells immediately adja
ent tothe 
oarse-�ne interfa
e.This will prove to be a very useful tool, in that we have separated the 
omposite operatorinto the appli
ation of a single-level operator D
rse and a 
orre
tion for the e�e
t of �ner levels.There is no reason why the re
ux-divergen
e 
orre
tion pie
e 
annot be applied separately from thesingle-level pie
e. In fa
t, in many situations in time-dependent algorithms, this separation of 
oarseoperator and �ne-level 
orre
tion will be
ome ne
essary.
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hyIn this se
tion, we will des
ribe our approa
h to solving Poisson's equation on a multilevelhierar
hy of grids. We will �rst des
ribe the dis
retization of our 
omposite Lapla
ian operator,in
luding a motivation of why we take so mu
h 
are developing 
omposite operators. Then, wedes
ribe our multilevel solution algorithm, and present an example demonstrating the performan
eof the algorithm.3.2.1 Composite Lapla
ian { Ellipti
 Mat
hingFirst, we 
an de�ne the level-operator Lapla
ian, whi
h will be the level-operator divergen
eD` applied to the level-operator gradient G`:L` = D`G`: (3.16)Re
all that the level-operator gradient uses the 
oarse-�ne interpolation operator I to 
omputeboundary 
onditions with a 
oarser level `� 1. This means that L` will be the single-grid Lapla
ianoperator L de�ned in (2.9), with the addition of the 
oarse-�ne interpolation operator I to provideboundary 
onditions with level `� 1 where ne
essary:(L`�)i;j = (�i+1;j + �i�1;j + �i;j+1 + �i;j�1 � 4�i;j)h2 on 
` (3.17)�` = I(�`; �`�1) on �
`:As mentioned earlier, we will de�ne the 
omposite Lapla
ian as the 
omposite divergen
eapplied to the 
omposite gradient: L
omp� = D
ompG
omp� (3.18)
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oarse grid away from the re�ned pat
hes the 
omposite operator looks the sameas the single-grid Lapla
ian operator from (2.9):L
rse(�)i;j = �
i+1;j + �
i�1;j + �
i;j+1 + �
i;j�1 � 4�
i;jh2
 : (3.19)Likewise, on the �ne grid away from 
oarse-�ne interfa
es the 
omposite operator looks likethe �ne-grid version of the single-grid Lapla
ian operator:Lfine(�)i;j = �fi+1;j + �fi�1;j + �fi;j+1 + �fi;j�1 � 4�fi;jh2f : (3.20)To de�ne the 
omposite operator where the normal sten
ils of the 
oarse and �ne operators
ross a 
oarse-�ne interfa
e, we �rst break the Lapla
ian into a 
ux-di�eren
ing formulation usinga 
ontrol volume around ea
h 
ell. We 
an then write the Lapla
ian as the 
ell-
entered divergen
eof edge-
entered 
uxes: L(�)i;j = r �F (3.21)= F xi+ 12 ;j � F xi� 12 ;j�x + F yi;j+ 12 � F yi;j� 12�ywhere F = r�: (3.22)Note that the 
uxes are edge-
entered quantities; at a 
oarse-�ne interfa
e, they will be de�ned onthe interfa
e. For the operator on the 
oarse side of the interfa
e, the 
oarse 
ux will be the averageof the 
uxes used by the �ne operator. Using edge-
entered 
uxes at the 
oarse-�ne interfa
e greatlysimpli�es the 
onstru
tion of the Lapla
ian operator a
ross 
oarse-�ne interfa
es.Re
all that the 
omposite gradient operator G
omp on a 
oarse-�ne interfa
e is de�nedthrough the use of the quadrati
 interpolation operator I to link 
oarse and �ne levels, and the
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omposite divergen
e operator links 
oarse and �ne levels by using the averaged �ne-grid 
uxes onthe 
oarse-�ne interfa
e to de�ne the divergen
e on the 
oarse side of the interfa
e.Applying the 
ux register and re
ux-divergen
e notation to the de�nition of the 
ompositeLapla
ian operator, the 
omplete des
ription of the 
omposite Lapla
ian L
omp on the valid region
ells of level ` will be: L
omp�
ompi;j = L`�ì;j +DR(ÆF `+1)i;j (3.23)�` = I(�`; �`�1) on �
`ÆF `+1 = hG`+1�`+1i �G`�`�`+1 = I(�`+1; �`) on �
`+1In words, the Lapla
ian is the single-level operator L` plus a re
ux-divergen
e 
orre
tion to a

ountfor the e�e
t of a �ner level (if one exists). Boundary 
onditions for the Lapla
ian operator betweenthis level and a 
oarser level ` � 1 (if one exists) are enfor
ed by using the quadrati
 interpolationoperator I to �ll ghost 
ells around 
`. The 
orre
tion for the e�e
ts of a �ner level is performedthrough a re
ux-divergen
e of the di�eren
e between the 
oarse and �ne 
uxes along the 
oarse-�neinterfa
e between levels ` and `+ 1. For the Lapla
ian operator, the 
ux is de�ned as the gradientof �. To 
ompute the �ne-level (`+ 1) gradient of � needed for the re
ux-divergen
e 
orre
tion, we�ll ghost 
ells around the �ner `+1 level using quadrati
 interpolation between the level ` and level`+ 1 solutions.In short, for the operators de�ned in the this se
tion, the basi
 philosophy will be toalways 
ompute boundary 
onditions with 
oarser levels using quadrati
 
oarse-�ne interpolation,while enfor
ing 
ux-mat
hing with �ner levels using re
ux-divergen
es of the di�eren
e in the 
oarseand �ne 
uxes.
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 Mat
hingWe have taken quite a bit of 
are while de�ning the 
omposite operators we will use. Inthis se
tion, we will present a 
ase explaining why we use su
h 
ompli
ated operators.When solving Poisson's equation on a multilevel hierar
hy, 
are must be taken to ensurethat the appropriate smoothness in the solution is maintained a
ross the 
oarse-�ne interfa
e. Sin
esolutions to ellipti
 equations like Poisson's equation are nonlo
al in nature, we expe
t that a la
kof smoothness at the 
oarse-�ne interfa
e will a�e
t the solution in a global way.The simplest approa
h would be to solve Poisson's equation on the 
oarse grid, where thesour
e term on the 
oarse grid, �
, is the average of �f (the sour
e term de�ned on the �ne grid)where the 
oarse grid is 
overed by the �ne grid. Then we 
ould solve the problem on the re�neddomain, using interpolated values from the 
oarse solution as boundary 
onditions for the �ne level.Unfortunately, it has been shown ([5℄) that the resulting 
omposite solution 
ontains an error whi
hs
ales with the 
oarse grid spa
ing. In other words, we are not attaining the in
reased a

ura
y wewould expe
t from a 
al
ulation on a re�ned mesh.The problem with this s
heme is that the 
oarse and �ne solutions are not suÆ
iently linked.Information is passed from the 
oarse grid to the �ne grid in the form of a Diri
hlet boundary
ondition, but the 
oarse solution is not modi�ed by the �ne solution in any way. This la
k of
ommuni
ation of information from the �ne solution ba
k to the 
oarse solution 
auses a dis
ontinuityin ���n whi
h is O(h
). Sin
e the derivative of a dis
ontinuous �rst derivative of the solution will looklike a Æ�fun
tion in the se
ond derivative, our solution looks like:L�+ CÆ(x
f )(���n fine � ���n
rse) = � (3.24)In e�e
t, we have 
reated a singular 
harge on the 
oarse-�ne interfa
e whi
h is 
orrupting the
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harge is proportional to the mismat
h in the derivatives of the 
oarse and �nesolutions, and is O(h
). Bai and Brandt [10℄ note that for a similar approa
h, the 
oarse solutionaway from a singular sour
e distribution is degraded be
ause of a la
k of 
onservation of sour
estrength between the problems being solved on the 
oarse grid and on the �ne grid.In order to attain the desired �ne-grid a

ura
y for solutions to Poisson's equation andto avoid 
orruption of the solution by 
oarse-�ne interfa
e error, we will need to ensure that the
omposite solution satis�es both Diri
hlet and Neumann mat
hing 
onditions at the 
oarse-�neinterfa
es. This is the ellipti
 mat
hing 
ondition.Essentially, the problem with this algorithm is that it did not use the 
omposite operatorsdes
ribed in Se
tion 3.1.2. Interpolating using both 
oarse and �ne grids and using the same 
uxesfor both 
oarse and �ne grids links the two solutions enough to satisfy the ellipti
 mat
hing 
onditionand �x the 
oarse-�ne interfa
e problem. We 
an then attain the improved a

ura
y expe
ted fromre�nement.3.2.2 Trun
ation Error AnalysisQuadrati
 interpolation is the minimum ne
essary to maintain se
ond-order a

ura
y glob-ally. We will use the gradient operator in the 
onstru
tion of the Lapla
ian, whi
h is a se
ond-derivative operator; it involves a division by h2. If an interpolated quantity has a trun
ation errorof O(hp), division by h2 in the se
ond derivative results in a trun
ation error of O(p�2). If we de�ne�ei;j as the exa
t 
omposite solution,�e;`i;j = '(xi; yj) on 
v̀alid; (3.25)
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i-1i-2

i+1

i

fine coarseFigure 3.6: Sample one-dimensional 
oarse-�ne interfa
ethen the trun
ation error � is de�ned on the valid regions of the level ` grids as:�i;j = �i;j � L
omp(�e)i;j : (3.26)For the one-dimensional example shown in Figure 3.6, where �Ii+1 is the interpolated value,and �i+1 � �Ii+1 = O(hp), we get:�2��x2 ji = �i+1 + �i�1 � 2�ih2 +O(h2) (3.27)= �Ii+1 + �i�1 � 2�ih2 + �i+1 � �Ii+1h2 +O(h2)so the error is O(max(hp�2; h2)). Even with quadrati
 interpolation (p = 3), there is still an O(h)error at the 
oarse/�ne interfa
e.Sin
e the dis
retization of the Lapla
ian on the interiors of grids away from 
oarse �neinterfa
es is O(h2), we lose one order of a

ura
y along the 
oarse-�ne interfa
e due to the 
oarse-�ne interpolation error (along with the division by h2 in the Lapla
ian operator). The questionthen arises, \Does this 
oarse-�ne error degrade the a

ura
y of the global solution?" Sin
e the
oarse/�ne interfa
e is a set of 
odimension one, we have observed that we 
an lose one order ofa

ura
y and still be O(h2) globally, similar to what we have observed at the physi
al boundary (seeSe
tion 2.2.1). This 
annot be improved by using higher-order interpolation; while the gradient at
` would be more a

urate, the trun
ation error in the �rst 
oarse 
ell would still be O(h), due to
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k of 
an
ellation in the error in the gradient on the two edges.Using a modi�ed equation analysis, Johansen [43℄ has demonstrated that, in fa
t, the
ontribution of the higher trun
ation error at 
oarse-�ne interfa
es is indeed O(h2). In essen
e, thisis the same reasoning presented in Se
tion 2.2.1, repeated here for 
ompleteness. While this is nota rigorous analysis, it does provide some insight, and agrees with what we see in pra
ti
e. First, wede�ne the trun
ation error, � , as �i;j = �� L(�e)i;j (3.28)where � is the dis
rete approximation to � used in the numeri
al method and L(�e)i;j is the dis
reteoperator applied to the exa
t solution �e. Then, as we have seen, we have these estimates for �i;j :�i;j = (O(h2) for interior 
ellsO(h) for 
ells adja
ent to a C/F interfa
e (3.29)If we de�ne the solution error �i;j = �i;j � �ei;j , then the error satis�es the error equationL� = � (3.30)The expe
tation is that the 
ontribution of ea
h 
ell to � is proportional to the total 
harge on that
ell. For an interior 
ell, this is �i;j �h2 = O(h4); for a boundary 
ell, it is �i;j �h2 = O(h3). Thereare O( 1h2 ) interior 
ells, for a total 
ontribution of O(h2) to �, while there are only O( 1h ) boundary
ells, resulting in a total 
ontribution of O(h2) as well.3.2.3 Multilevel Multigrid Iteration AlgorithmThe algorithm des
ribed here is the logi
al extension of the multigrid algorithm des
ribedin Se
tion 2.2.3 to a multilevel hierar
hy of lo
ally re�ned grids. Our algorithm is a variant of one�rst proposed by Brandt [24℄, and extended by Bai and Brandt [10℄. Thompson and Ferziger [65℄
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ompute steady in
ompressible 
ow, and Almgren, Buttke,and Colella [7℄ developed a node-
entered version for use in a fast vortex method.The algorithm des
ribed here is based on that in Martin and Cartwright [47℄, whi
h is itselfa 
ell-
entered extension of the node-
entered algorithm of Almgren, Buttke, and Colella. [7℄. Asimilar algorithm has been used for steady 
ompressible 
ow by Dudek [34℄, and for semi
ondu
tordevi
e simulation by Betten
ourt [22℄. The only substantial modi�
ation in the algorithm from [47℄is the addition of a 
onjugate-gradient solver for unions of re
tangles for the 
oarsest level, insteadof repeated relaxation, as was used in the previous work (see Se
tion 3.2.5). This will allow ellipti
solves whi
h have a 
oarsest level `base > 0, be
ause we will generally have to solve on an arbitraryunion of re
tangles at the bottom of the multigrid V-
y
le, instead of a single 1� n grid.For simpli
ity, we will �rst des
ribe the multilevel solution algorithm for the 
ase where weare solving over the entire domain (`base = 0) and nref = 2. Then we will extend the algorithm to
over more general 
ases.We want to solve L
omp(�) = � on 
`base (3.31)where L
omp(�) is the 
omposite Lapla
ian operator des
ribed in Se
tion 3.2.1.For ea
h re�nement level from ` = 0 to `max, we will obviously need to store 
`, �`, and�`, where �` and �` are only de�ned on 
` �P(
`+1), that is, wherever 
` is not 
overed by a �nergrid. Sin
e we are using the residual-
orre
tion formulation, for ea
h level we will also have to de�nethe residual R` and the 
orre
tion e` on the entire 
` (in
luding the 
overed regions of 
`).In addition to the 
omposite Lapla
ian L
omp, whi
h is de�ned over the entire hierar
hy oflevels, and the level-operator Lapla
ian L`, we will also de�ne the 
omposite Lapla
ian on level `,
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omp;`(�`; �`+1; �`�1), whi
h is de�ned on the valid region of level `:L
omp;`(�`; �`+1; �`�1) = L
omp� on 
` � P(
`+1) (3.32)Re
all that away from the boundaries of 
v̀alid, L
omp;` is simply the normal Lh`�` that we are usedto dealing with. In 
ells whi
h abut the 
`=
`�1 boundary, we interpolate values into the border
ells using the quadrati
 interpolation operator I and then evaluate Lh` as usual. Finally, for 
ellsadja
ent to the 
`=
`+1 boundary, we use our 
ux mat
hing 
ondition to generate the 
uxes a
rossthe boundary. Thus, we always interpolate 
oarse grid information as mentioned earlier, and wealways use the 
ux mat
hing 
ondition to represent the in
uen
e of the �ner grids.Note that we have expli
itly shown the dependen
e of L
omp;` on both the 
oarser-levelsolution (in the form of quadrati
 interpolation with �`�1) and the �ner-level solution (in the form ofthe 
ux-mat
hing 
ondition with �`+1). In a similar way, we will expli
itly show the dependen
e ofL` on the 
oarser-level solution through the 
oarse-�ne boundary 
ondition I(�`; �`�1) by referringto the level-operator Lapla
ian as L`(�`; �`�1).We will also need an operator whi
h performs a point relaxation for Poisson's equation.So, we de�ne GSRB LEVEL(e`; R`; h`) on 
`. This performs one iteration of Gauss-Seidel withRed-Bla
k ordering on the data on level `. This operator has no information about other levels,although it should know the appropriate operators and boundary 
onditions to relax on ea
h level.Therefore, this operator looks like:eì;j := eì;j + �fL`(e`; e`�1 = 0)�Rì;jg (3.33)with red-bla
k ordering. As before, red-bla
k ordering means that we relax using two passes throughthe domain in a 
he
kerboard pattern: on the �rst pass, we relax on points where (i+j) is even



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 80(the RED pass); on the se
ond, we relax on points where (i+j) is odd (the BLACK pass). Notethat, be
ause the GSRB LEVEL is designed to be unaware of both 
oarser and �ner levels, therelaxation uses L` with all the 
oarse grid information set to 0. In other words, we use the 
oarse-�ne interpolation operator I(�`; 0`�1), where 0`�1 denotes a 
oarse level `� 1 grid with zeros in allthe 
ells. For interior 
ells, we use the normal relaxation parameter �interior = h24 .For ea
h level, the residual will 
ontain two 
omponents. First, as in normal multigridrelaxation, the residual on level ` 
ontains the residual from higher (�ner) levels, mostly the lowwavenumber error that is not damped out by the GSRB iterations at the �ner levels. In addition,there is the residual from the operators on level ` where there are no overlying �ner grids. If thereis no overlying �ne grid, then we are starting our multigrid V-
y
le on this level; otherwise, we aresimply 
ontinuing the multigrid relaxation whi
h was begun on the �ner levels.The multilevel multigrid algorithm we will employ is des
ribed in pseudo
ode form in Figure3.7. The fun
tion AMRPoisson(�) will 
all the re
ursive multigrid iteration fun
tion MGRelax(`)until the maximum residual has been de
reased by a fa
tor of �.The algorithm is stru
tured like the multigrid algorithm for a single grid, des
ribed inSe
tion 2.2.3 { we start at the �nest levels, then progressively 
oarsen and relax our way down theV-
y
le, then solve on the 
oarsest level, then interpolate and relax our way ba
k up the V-
y
le.The di�eren
e is that in this 
ase, the data to whi
h we are applying our various operators maynot be de�ned on the entire physi
al domain at that level. We will use the same interpolationand restri
tion operators that we used in the single-grid multigrid algorithm: R`�1` will be simplearithmeti
 averaging, and I `̀�1 will be pie
ewise 
onstant interpolation.Sin
e we 
ompute the 
oarser-level residual on the un
overed regions of the 
oarser grids
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omp(�):while (jResj > �j�j)Res := �� L
omp(�):MGRelax(`max).end whileend AMRPoissonMGRelax(`):if (` = `max) then Res` := �` � L`(�`; �`�1)if (` > 0) then�`;save := �`e`�1 := 0e` := GSRB LEVEL(e`;Res`; h`)�` := �` + e`Res`�1 := R`�1` (Res` � L`(e`; e`�1)) on P(
`)Res`�1 := �`�1 � L
omp;`�1(�`�1; �`; �`�2) on 
`�1 � P(
`)MGRelax(`� 1)e` := e` + I `̀�1(e`�1)Res` := Res` � L`(e`; e`�1)Æe` := 0Æe` := GSRB LEVEL(Æe`;Res`; h`)e` := e` + Æe`�` := �`;save + e`else solve/relax L0e0 = Res0 on 
0�0 := �0 + e0end ifend MGRelaxFigure 3.7: Pseudo
ode des
ription of AMR Poisson multigrid algorithm
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omposite operator L
omp;`�1(�`�1; �`; �`�2), note that we update �` with the 
urrent
orre
tion before 
omputing the 
oarser residual, in order to 
ompute a residual whi
h re
e
ts
orre
tions made on the �ner level. However, on the way ba
k up the multigrid V-
y
le, we willwant to add the 
orre
tion to the original value for �, whi
h is why we save the original un
orre
tedvalue for �` as �`;save.When we arrive at the 
oarsest level, we have one domain. We 
an then iterate on L0e0 =Res0 on 
0 using the single-grid multigrid algorithm des
ribed in Se
tion 2.2.3. On
e that is done,we update the 
oarse level solution, �0 := �0 + e0, and start ba
k up the V-
y
le.On the way up the multigrid V-
y
le, we must modify the algorithm slightly. First, weupdate the �ne grid (level `) 
orre
tion:e` = e` + I `̀�1(e`�1): (3.34)However, now we 
annot go dire
tly to a GSRB LEVEL iteration, be
ause we now have a 
oarse grid
orre
tion whi
h we will need to use as a boundary 
ondition. We handle this the same way we handleany problem with inhomogeneous boundary 
onditions: we put the problem in residual-
orre
tionform to make the boundary 
onditions homogeneous. So, we �rst must modify the residual:Res` := Res` � L`(e`; e`�1): (3.35)We then de�ne a 
orre
tion to the 
orre
tion, Æe`, set it to 0, and then perform a GSRB LEVELoperation on it: Æe` := GSRB LEVEL(Æe`;Res`; h`): (3.36)Then, we 
an update the 
orre
tion and the 
opy of �` whi
h we had saved:e` := e` + Æe` (3.37)
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l = 0

l = 1
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Bottom solve
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ref = 2n
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Figure 3.8: Multigrid with nref 6= 2. Be
ause n1ref = 4, we perform an intermediate 
oarsening in themultigrid 
y
le before 
oarsening from level 2 to level 1.�` := �`;save + e`: (3.38)3.2.4 Extension to nref = 2p; p > 1When nref is two, the multigrid 
oarsening and inje
tion is straightforward, sin
e the
oarsenings used in the multigrid algorithm 
orrespond to existing levels of re�nement. This is notthe 
ase when nref is greater than two, however; we still want to 
oarsen by a fa
tor of two formultigrid, but this will result in intermediate multigrid levels whi
h do not 
orrespond to the datain our multilevel grid hierar
hy.In this 
ase, we will modify the algorithm slightly by doing a mini-multigrid V-
y
le,
oarsening the �ne grids by repeated fa
tors of two until the next 
oarsening would result in thesame grid spa
ings as an existing level of data in the AMR hierar
hy. A s
hemati
 of this 
y
le isshown in Figure 3.8. In this example, n1ref = 4. So, we �rst relax on level 2, then 
oarsen the level 2
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oarsen the residual and 
orre
tion to this intermediatelevel, and relax using GSRB-LEVEL. Then, we interpolate the 
orre
tion ba
k to level 2 and relaxon level 2 again. Then, we 
oarsen the level 2 residual down to level 1 and 
ontinue on our way.Sin
e n0ref is 2, we 
an relax on level 1 and then 
oarsen dire
tly down to level 0, from whi
h we on
eagain 
oarsen as far as possible, solve, and then pro
eed ba
k up the hierar
hy. On
e the solutionhas been relaxed on level 1, we interpolate dire
tly to level 2, relax on level 2, then 
oarsen to theintermediate level again, where we relax again before interpolating the solution ba
k up to level 2and performing a �nal relaxation.The reason why we relax on the intermediate levels and then interpolate ba
k to the �nelevel before 
oarsening to the next 
oarsest AMR level is that 
oarse-�ne boundary 
onditions aresimpli�ed. Sin
e we are using the residual-
orre
tion form of the equation, the 
oarse-�ne boundary
onditions on the 
orre
tion are a homogeneous version of the 
oarse-�ne interpolation dis
ussedin Se
tion 3.1.2. In this interpolation, we use the same 
oarse grid used in the level 2/level 1interpolation, but with zeroes in all the 
ells. It is important for 
onsisten
y that we use the same
oarse grid for all the intermediate 
oarsenings, so that the distan
e of the 
oarse-
ell values fromthe 
oarse-�ne interfa
e remains 
onstant as we 
oarsen the grids.Note also that for nref = 8 there would be two intermediate levels, for nref = 16 therewould be three intermediate levels, et
. (Although in pra
ti
e we rarely use nref > 4).3.2.5 Extension to `base > 0In various pla
es we will want to solve a multilevel ellipti
 problem on levels ` � `basewhere `base > 0. In this 
ase, we are solving on all levels �ner than (and in
luding) level `base, withappropriate 
oarse boundary 
ondition values provided from level `base�1 if ne
essary. This solution
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tion 3.2.3 for the levels �ner than `base. When we rea
hlevel `base, we perform a pro
edure similar to that used for level 0 in Se
tion 3.2.3, 
oarseningthe level `base grids as mu
h as possible. In general, we will not be able to rea
h a 1 � n gridthrough repeated 
oarsenings of level `base grids. In most 
ases, we will rea
h a point where further
oarsenings are impossible without destroying the \footprint" of the grids (Figure 3.10). In otherwords, further 
oarsening will result in a set of 
oarsened grids whi
h, when re-re�ned, will not bethe same as the original grids:
`;
oarsest 6= refine(
oarsen(
`;
oarsest)):When we rea
h this level, we then solve the resulting 
oarsened residual-
orre
tion equation exa
tly(or as exa
tly as possible) before starting ba
k up the hierar
hy. At present, we use a 
onjugategradient solver [12℄ as a bottom solver. Our implementation of a 
onjugate gradient solver on a unionof re
tangles follows that of Betten
ourt [22℄, and is detailed in Figure 3.9. Note that 
omputationsare 
arried out using 
omposite operators over the union of grids. Note also that the problemas de�ned with 
omposite operators over a union of grids is no longer symmetri
, so the 
onjugategradient approa
h is not guaranteed to work. In our 
ase, the problem is simple enough that we havenot experien
ed any diÆ
ulties; however, Betten
ourt [22℄ found it ne
essary to use a Bi
onjugateGradient Stabilized (BiCGStab) method for problems with strongly varying 
oeÆ
ients.Coarse-�ne boundary 
onditions are enfor
ed by using the 
oarse-�ne interpolation de-s
ribed in Se
tion 3.1.2 to 
ompute ghost-
ell values for � when 
omputing the residual on level`base. Then, homogeneous 
oarse-�ne interpolation (again keeping the 
oarse grid data 
onstant) isused for the 
oarsenings of level `base, in the same way as for the intermediate multigrid levels inSe
tion 3.2.4.



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 86
BottomSolve(�; b)res(0) = L(�)� b
orr(0) = 0for (i = 1; 2; :::)Smooth(
orr(i�1); res(i�1))Smooth(
orr(i�1); res(i�1))if ( i > 1 and �i�2 == 0:0 ) return�i�1 = Dot(
orr(i�1) ; res(i�1))if (i == 1)p(1) = 
orr(0)else�i�1 = �i�1=�i�2p(i) = 
orr(i�1) + �i�1 � p(i�1)end ifq(i) = L(p(i))�i = �i�1=Dot(q; p(i))
orr(i) = 
orr(i�1) + �ip(i)res(i) = res(i�1) � �iq(i)u(i) = L(
orr(i))� res(0)if (ku(i)k < tol � kres(0)k) returnend for� = �+ 
orriend BottomSolve Figure 3.9: Pseudo
ode for the 
onjugate gradient bottom solver
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Figure 3.10: Best Coarsening: Grid 
on�guration at right is the best possible 
oarsening of the grids atleft.3.2.6 Level SolvesIn the AMR algorithm for the in
ompressible Euler equations whi
h is des
ribed in thenext 
hapter, we will also at times need to solve the ellipti
 equation on one level ` without solvingon either �ner or 
oarser grids. In this 
ase, the algorithm will be the same as that of the algorithmin Se
tion 3.2.5 if `base is also the �nest level. We simply 
ompute the residual on 
` without takingthe e�e
t of �ner levels (even if they do exist) into a

ount. Then, we implement multigrid in thesame way as in Se
tion 3.2.5 for level `base: 
oarsen as far as possible, apply the 
onjugate-gradientbottom solver, and then re�ne ba
k up to level `.
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(a) (b)Figure 3.11: AMR Poisson test problem (a) Sour
e distribution, and (b) Solution3.2.7 Performan
e of the AlgorithmThe AMRPoisson 
ode was tested on a sample problem with � equal to three Gaussian
harges, as shown in Figure 3.11. To give an idea of grid pla
ement, the grids used for a solution withtwo levels of re�nement are shown as well. To judge the e�e
ts of adaptivity, we solved this problemwith a series of 
oarser base grids, but with the same error toleran
e. By doing this, we solve theproblem to the same level of a

ura
y ea
h time, but more levels of re�nement be
ome ne
essary asthe base grid be
omes 
oarser. The Ri
hardson extrapolation error estimation algorithm of Se
tion5.3 was used to estimate the lo
al trun
ation error of the solution; 
ells with estimated errors higherthan the spe
i�ed error toleran
e were tagged for re�nement. Cells marked for re�nement werethen 
lustered into unions of re
tangles using the 
lustering algorithm of Berger and Rigoutsos [20℄,des
ribed in Se
tion 5.4.1. By setting the error toleran
e �error for the Ri
hardson extrapolation



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 89Base Grid Size h = 1/64 1/128 1/256 1/512 1/1024 total1024 � 1024 |- |- |- |- 1048576 1048576512 � 512 |- |- |- 262144 2304 264448256 � 256 |- |- 65536 10496 2304 78336128 � 128 |- 16384 17280 10496 2304 4646464 � 64 4096 15360 17152 10496 2304 49408Table 3.1: Number of 
ells at ea
h grid resolution, tabulated for di�erent base grid sizes when solvingsample problemerror tagging routine to be 0.0005, no re�nements were needed for a base grid of 1024�1024, whileone level of re�nement was needed for a 512�512 base grid (and two levels were needed for a 256�256base grid, et
.). For all of the solutions, the maximum error on the �nest grid as 
omputed using(3.39) was 4:27� 10�4.Error` = Average(L`(�`; �`�1))� L`�1(Average(�`)): (3.39)To show the e�e
ts of adaptivity on the resulting grid hierar
hy, the total number of 
ells on ea
h levelis tabulated in Table 3.1. It is worth noting that, in every solution where re�nement is employed, thenumber of 
ells at the �nest resolution is 
onstant at 2304, while the number of 
ells at the se
ond�nest resolution is 
onstant at 10496. This points to the e�e
tiveness of Ri
hardson extrapolationas a 
onsistent indi
ator of the ne
essary resolution for attaining a given level of a

ura
y in thesolution. The 
onvergen
e history of this algorithm is shown in Figure 3.12 for re�nement ratios of 2,4, and 8 Adding lo
al re�nement to the solution did a�e
t the 
onvergen
e rates of the multigrid 
y
lesomewhat. The 
onvergen
e results are shown in Table 3.2. With no re�nement, the Max(residual)was redu
ed by an average fa
tor of 16.0 per multigrid 
y
le. In other words, the maximum of theresidual after one full multigrid V-
y
le was, on average, 116:0 times the maximum residual at the
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Convergence for nRef = 2

1 Level
2 Levels
3 Levels
4 Levels

Max Residual

Iteration #1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0.00 2.00 4.00 6.00 8.00(a)

Convergence for nRef = 4

1 Level
2 Levels
3 Levels

Max Residual

Iteration #

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

0.00 2.00 4.00 6.00 8.00(b)
Convergence for nRef = 8

1 Level
2 Levels

Max Residual

Iteration #

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

0.00 5.00 10.00(
)Figure 3.12: Multigrid Convergen
e for (a) nref = 2, (b) nref = 4, and (
) nref = 8



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 91Re�nement Ratio 1 level 2 levels 3 levels 4 levels(no re�nement)2 16.00 31.87 37.23 35.264 16.00 20.58 25.25 |-8 16.00 5.23 |- |-Table 3.2: Convergen
e rates (average fa
tor by whi
h max(residual) is redu
ed for ea
h multigrid itera-tion), tabulated for di�erent re�nement ratios and number of levels of re�nementstart of the V-
y
le. When one level of re�nement (with a re�nement ratio of 2) was added to thesolution, the 
onvergen
e rate in
reased to an average fa
tor 31.9 redu
tion per multigrid 
y
le. Ase
ond re�nement led to in
reased 
onvergen
e, with an average redu
tion of 37.23. When a fourthlevel was added, however, the 
onvergen
e rate de
reased to an average fa
tor 35.26 redu
tion in themax(residual).Re�nement ratios greater than 2 do appear to slow 
onvergen
e somewhat. With a re-�nement ratio of 4, one level of re�nement 
onverged with an average fa
tor 20.58 redu
tion inthe residual, while for two levels, the max(residual) was redu
ed by an average fa
tor of 25.25 permultigrid iteration. Using a re�nement ratio of 8 led to a markedly poorer performan
e, however.One level of fa
tor 8 re�nement only showed an average redu
tion in the max(residual) of a fa
tor of5.3 per multigrid 
y
le. For the rest of this se
tion, all timing results use a re�nement ratio of two.We believe that the slower 
onvergen
e rates for re�nement ratios greater than two are a result ofthe intermediate V-
y
les ne
essary in these 
omputations.To easily judge the e�e
ts of adaptivity, timings were normalized by the timing for theunre�ned 1024�1024 solution, whi
h was 58.11 se
 on an SGI Power Challenge. Also, the totalnumber of 
ells for all levels in ea
h solution (in
luding the non-valid portions where grids areoverlain by �ner grids) was re
orded and likewise normalized by the total number of 
ells for the
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Normalized Timings and Cellcounts
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0.00 1.00 2.00 3.00 4.00Figure 3.13: Normalized timings for the Poisson Solverunre�ned grid, 1048576. The total number of 
ells is an indi
ator of how mu
h memory was used inthe solution. A log plot of these normalized results appear in Figure 3.13. As 
an be seen, the totalnumber of 
ells in the solution de
reases with the number of re�nement levels, ranging from 30.6%of the base number of 
ells with one level of re�nement to 4.5% of the base number of 
ells withthree levels of re�nement. Adding a fourth level of re�nement a
tually in
reases the total numberof 
ells be
ause so mu
h of the base level is being re�ned (in this 
ase, 93.75 of the domain is re�nedto level 1). The timings initially de
rease strongly with additional levels of re�nement, up to twolevels of re�nement, then level o� at around 15% of the CPU time for the unre�ned solution anda
tually rise slightly. This leveling o� is due to the need when using Ri
hardson extrapolation to
ompute a solution with ` � 1 levels before generating a `th level. In other words, to 
ompute asolution with two levels of re�nement, �rst a single grid solution must be 
omputed, then the error
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h are then used to 
ompute a two level solution, and thenthe error estimator is able to 
reate the level 2 grids based on the error 
omputed in the two level
omposite solution. Sin
e the 
oarser levels are, in general, small in 
omparison to a �ner basedomain, this is generally inexpensive. However, with more levels of re�nement, this 
an begin too�set the savings in 
omputational time. In a sense, this is sub-optimal, be
ause more e�ort is beingspent on re
omputing solutions on the 
oarse levels than on the �ner levels, espe
ially if the re�nedlevels are small 
ompared to the 
oarse levels. Bai and Brandt [10℄ suggest 
omputing the initialsolutions to less a

ura
y, in
reasing the solution a

ura
y as the number of levels in
reases. In theirexperien
e, this evens out the amount of work spent on 
oarser levels.It should be noted, however, that on
e the break even point has been rea
hed on CPUtime, the additional re�nement in this 
ase still represents a savings in memory. Obviously, whenthe total number of 
ells in
reases, as is the 
ase between three and four levels of re�nement, CPUtime will in
rease faster than the number of 
ells in the solution, due to the overhead of generatingand managing the grid hierar
hy.3.3 Alternate AlgorithmIn our time-dependent algorithm for the in
ompressible Euler equations, we will re�ne intime as well as spa
e. Sin
e di�erent levels will be advan
ed using di�erent timesteps, it will notgenerally be feasible to perform solves in the 
omposite manner outlined in the previous se
tions.Following the example of Berger and Colella [18℄, we will stru
ture our multilevel solution algorithmas a series of solves on individual levels, along with 
orre
tions to enfor
e the proper 
oarse-�nemat
hing 
onditions. The level solves will 
onsist entirely of operations on single levels (with no
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uen
e from �ner levels) and interpolated boundary 
onditions from 
oarser grids if ne
essary.On
e a solution based on level operators has been 
omputed on all levels, we will need to 
orre
tto the solution to ensure that the 
omposite solution satis�es the equations based on 
ompositeoperators.3.3.1 LevelSolve + Corre
tion FormulationIn the 
ase of Poisson's equation, this is straightforward. Using (3.23), we 
an re-
ast theequation we are trying to solve on a given level ` as:L
omp;`(�`) = L`(�`;�`�1) +DR(Æ�`+1) = �` (3.40)�` = I(�`;�`�1) on �
`=`�1Noti
e that we have expli
itly in
luded the 
oarse-�ne interpolation operator, whi
h represents the
oarse-�ne boundary 
ondition on � with the 
oarser level ` � 1. Æ�`+1 is the 
ux register whi
h
ontains the mismat
h in r� along the `=`+ 1 interfa
e, whi
h is:Æ�`+1 = �G`�`+ < G`+1�`+1 > on �
`=`+1 (3.41)where G`+1�`+1 is 
omputed using the standard 
oarse-�ne interpolation operator to 
ompute ghost
ell values for �I .This formulation leads to an obvious splitting into level operators and 
orre
tions. Let� = �+ e (3.42)where �` is the result of a level solve for � and e is the 
orre
tion �eld needed to ensure that �satis�es the 
omposite equation. In this 
ase, (3.40) be
omes:L� = L`�` +DR(Æ�`+1) + L`e` +DR(Æe`+1) = � (3.43)
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`=`�1e` = I(e`; e`�1) on �
`=`�1With a little rearranging, this be
omes the level solve equation for �:L`�` = �` (3.44)�` = I(�`; �`�1) on �
`along with an asso
iated equation for e:L`e` = �DR(Æ�`+1)�DR(Æe`+1) (3.45)e` = I(e`; e`�1) on �
`whi
h we 
an solve through iteration, also using level solves.All that remains is to embed this formulation in an iterative algorithm. There are a
tuallytwo di�erent ways to do this. While the initial level solves for � must be ordered from the 
oarsestlevel followed by the su

essively �ner levels be
ause of the 
oarse level boundary 
onditions, the
orre
tion need not be done that way. The 
orre
tion may be solved from 
oarsest level to �nestlevel (bottom-up iteration), or it may be solved from the �nest level down to the 
oarsest level(top-down iteration). We will look at ea
h in turn. Both algorithms were then tested using a similartest problem to that used in Se
tion 3.2.7, but with only one Gaussian sour
e in the 
enter (to makevisualization simpler).3.3.2 Bottom-Up IterationIn this algorithm, we �rst do a series of single level solves for �, solving from the 
oarsestlevel up to the �nest, using the 
oarser level solution as a boundary 
ondition for the 
urrent level.
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oarsest level, we solve for e, whi
h is the 
orre
tion due to the e�e
t of the�ner level solution. We then iterate on the 
orre
tion until the 
omposite residual is suÆ
ientlyredu
ed. The sour
e for the 
orre
tion on ea
h level ` has two 
omponents: the mismat
h betweenthe 
urrent level and the �ner (`+ 1) level appears as a re
ux-divergen
e around the proje
tion ofthe (`+1) grids, while the mismat
h between the solution on the level ` and the 
oarser `�1 solutionappears in the 
oarse-�ne boundary 
ondition. On the �nest level, all we are doing is relaxing the
orre
tion to a

ount for the mismat
h due to the 
orre
tion on the 
oarser levels. A pseudo
odedes
ription of this algorithm is shown in Figure 3.14.Convergen
e HistoryThe 
onvergen
e history for this algorithm is shown in Figure 3.15, whi
h shows the L1norm of the 
omposite residual vs. number of 
orre
tion iterations for two-, three-, four-, and �ve-level solutions (a two-level solution has a base grid and one level of re�nement). For this algorithm,the 
omposite residual de
reases monotoni
ally with 
orre
tion iterations. For ea
h 
ase, the residualdrops o� at a slower rate for (`max � 2) iterations (whi
h is (number of 
oarse-�ne interfa
es) -1),and then drops o� very rapidly down to roundo�. This is apparently due to the need to 
orre
tfor the e�e
ts of the 
orre
tion on the 
omposite solution. Figure 3.16 shows the residual for thethree-level 
ase.3.3.3 Top-Down IterationIn this version of the algorithm, the level solves are done as before, but the 
orre
tionsare done starting at the �nest level and pro
eeding down to the 
oarsest level. This means that



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 97
BottomUp(�)do ` = 0, `maxsolve L`(�`; �`�1) = �`, �` = I(�`; �`�1) on �
`=`�1if (` < `max)Æ�`+1 = �G`�` on �
`=`+1if (` 6= 0)Æ�` = Æ�` + hG`�`i on �
`=`�1Æe` = Æ�`end doRes = �� L
omp(�)while (kResk < �k�k) do:do ` = 0, `maxsolve L`(e`; e`�1) = DR(Æe`+1); e = I(e`; e`�1) on �
`=`�1if (` < `max)Æe`+1 = Æ�`+1 �G`e` on �
`=`+1if (` 6= 0)Æe` = Æe` + hG`e`i on �
`=`�1end doRes = �� L
omp(�)end whileend BottomUp Figure 3.14: Bottom-up iteration algorithm
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L1(Residual) vs. Correction Iterations
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0.00 5.00Figure 3.15: Convergen
e history { bottom-up iterationsthe 
oarse-level 
orre
tions used for the 
oarse-�ne boundary 
ondition for the 
urrent 
orre
tion islagged behind the 
urrent 
orre
tion. On the �nest level, the initial 
orre
tion does nothing, sin
ethe 
oarse 
orre
tion is initially 0, and there is no residual indu
ed from a �ner level. Then, theinitial 
orre
tion on the 
oarser levels is solely due to the mismat
h in � (the level-solve solution)at the `=`+ 1 interfa
e. Subsequent 
orre
tions on a level ` then a

ount for the 
urrent mismat
hwith the �ner level `+ 1 as well as the lagged mismat
h with the 
oarser level `� 1. A pseudo
odedes
ription of this algorithm is shown in Figure 3.3.3.Convergen
e HistoryThe 
onvergen
e history for this algorithm is shown in Figure 3.18, whi
h shows the L1norm of the 
omposite residual vs. number of 
orre
tions for two-, three-, four-, and �ve-levelsolutions. Note that, as opposed to the results shown in Figure 3.15, the residual initially rises,
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(a)

(b) (
)Figure 3.16: Residual for bottom up iteration: (a) initial residual (after level solves), (b) after 1 multigrid
orre
tion iteration, and (
) after 2 multigrid 
orre
tion iterations
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TopDown(�)do ` = 0, `maxsolve L`(�`; �`�1) = �`, �` = I(�`; �`�1) on �
`=`�1if (` < `max)Æ�`+1 = �G�` on �
`=`+1if (` 6= 0)Æ�` = Æ�` + hG`�`i on �
`=`�1Æe` = Æ�`end doRes = �� L
omp(�)while (kResk < �k�k) do:do ` = `max; 0solve L`e = DR(Æe`+1); e = I(e`; e`�1) on �
`=`�1if (` 6= 0)Æe` = Æ�` + hG`e`i �G`e`�1 on �
`=`�1end doRes = �� L
omp(�)end whileend TopDown Figure 3.17: Top-down iteration algorithm
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L1(Residual) vs. Correction Iterations
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e history { top-down iterationsstays relatively 
onstant, and then begins a rapid de
rease to roundo� after `max iterations.As 
an be seen in Figure 3.19, it appears that the residual �rst in
reases at all 
oarse-�ne interfa
es, and then the large residual is eliminated at the level 0/1 interfa
e, then the level1/2 interfa
e, and so on up the hierar
hy until all the large 
oarse-�ne interfa
e error has beeneliminated.This slowdown in 
onvergen
e is most likely due do the lagged nature of the 
orre
tions.One way to think about this is that there is not really one 
orre
tion, but a series of 
orre
tionse0; e1; e2; ::: and the total solution is equal to the result from the level solves � plus the sum of the
orre
tions: � = �+ n=nmaxXn=0 en (3.46)Reiterating (3.45), the 
orre
tion should satisfy:
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(a) (b)

(
) (d)Figure 3.19: Residual for top down iteration: (a) initial residual after level solves, (b) after 1 multigrid
orre
tion iteration, (
) after 2 multigrid 
orre
tion iterations, and (d) after 4 multigrid 
orre
tion iterations.
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L`e = �DR(Æ�`+1)�DR(Æe`+1)e = I(e`; e`�1)With this algorithm, the 
orre
tion en is a
tually satisfying:L`en = �DR(Æ�`+1)�DR(ÆF e`+1n )� k=n�1Xk=0 [DR(Æe`+1k ) + L`ek℄ (3.47)en = I(eǹ; e`�1n�1)The notation ÆF e`+1n refers to the normal 
ux register, but with the �ne level 
omponent only, dueto the lagged nature of the 
orre
tion:ÆF e`+1n =< G`e`+1n > on �
`=`+1: (3.48)Note also the mismat
h in the 
oarse-�ne boundary 
ondition.The �rst 
orre
tion, e0, solves only for the mismat
h in � between the ` and ` + 1 levels,along with the e�e
t of the �ne level 
orre
tion on the solution. In subsequent iterations, the equationbeing solved is: L`en = �DR(ÆCe`+1n�1)�DR(ÆF e`+1n )en = I(eǹ; e`�1n�1) on �
`=`�1; (3.49)where ÆCe`+1n�1 is the 
oarse level 
ontribution to the level `=`+ 1 
ux register:ÆCe`+1n = G`eǹ on �
`=`+1: (3.50)So, the e�e
t of the large 
oarse-�ne error is propagated down to the level 0/1 interfa
e, where it iseliminated, and then the level 1/2 interfa
e 
an be updated, and so on.
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e and ErrorsWe also looked at the global 
onvergen
e of the multilevel Poisson solvers des
ribed in this
hapter. Be
ause the 
omposite operators, residual, and 
onvergen
e 
riteria were de�ned in thesame way for ea
h method, we expe
t that the a

ura
y and errors in ea
h will be 
omparable. So,while the analysis in this se
tion was 
ondu
ted using the bottom-up level solve/
orre
tion algorithmof Se
tion 3.3.2 (be
ause that is what we were working on when this work was done), it should beappli
able to the standard multilevel solution algorithm as well.3.4.1 Convergen
eTo obtain 
onvergen
e results, we solved Poisson's equation for a problem for whi
h wehave an exa
t solution. This enabled us to better look at errors in the solution and their behavior asthe grids were re�ned. The sample problem used was a single quarti
 sour
e, with Diri
hlet physi
alboundary 
onditions set to be the exa
t solution on �
 if the problem was being solved in anin�nite domain using the higher-order ghost-
ell dis
retization (2.3). For these 
onvergen
e studies,the strategy was to �x a 
ertain number of levels (in this 
ase we looked at two-level solutions { baselevel + one level of re�nement), and then let the Ri
hardson extrapolation error estimator (Se
tion5.3) generate grids adaptively based on its trun
ation error estimates. As we re�ne the base grids,we also s
ale the regridding error toleran
e for 
onsisten
y. Sin
e we expe
t the algorithm to beO(h2), we s
ale the toleran
e in the same way; for example, the toleran
e for a 128�128 base gridwould be 142 the toleran
e of the 32�32 
ase.Quantities that we looked at were:



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON'S EQUATION 105� Error: � = �exa
t � �� Trun
ation Error: � = L(�exa
t)� L(�) (3.51)= L(�exa
t)� �� Boundary trun
ation error, �bnd, the trun
ation error on 
ells adja
ent to 
oarse-�ne interfa
es(on both the �ne and 
oarse sides of the interfa
e).� Internal trun
ation error, �int: the 
omplement to �bnd�int = � � �bnd (3.52)� Boundary Error: The error in the solution whi
h is a result of trun
ation error at the 
oarse-�neinterfa
es. To 
ompute this, we solve the equation:L(�bnd) = �bnd; (3.53)�bnd = 0 on �
� Internal error: The 
omplement to �bnd (this also in
ludes the error due to physi
al boundary
onditions). �int = �� �bnd (3.54)Plots of these errors vs. 
oarse grid spa
ing are shown in Figure 3.20 in L1 and L1 norms.The \bump" in the error after the 128�128 base grid o

urs due to a 
hange in the grid 
on�guration.
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Errors vs. grid spacing
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upy a 
orner in the domain, with both the top and right sidesof the re�ned pat
h abutting the physi
al boundary. As the base grids get �ner, the �ne pat
hseparates from the physi
al boundary, so that it has 
oarse-�ne interfa
es on all four sides. It isworth noting that this rearrangement of the grids has little, if any, e�e
t on the global error andtrun
ation errors { it just leads to a redistribution of the error between \internal" and \boundary"
omponents.As expe
ted, the L1 norm of the global error is O(h2), as is �int. Also as expe
ted, the L1norm of the trun
ation error is O(h), due in this 
ase to the trun
ation error indu
ed at the physi
alboundaries. The L1 
onvergen
e of this algorithm appears to be between O(h1:6) and O(h2).3.4.2 E�e
ts of Lo
al Re�nementAnother interesting result was obtained by taking the 64�64 base grid 
ase and allowingthe grid generator to generate as many grids as it deemed ne
essary. The errors as a fun
tionof number of re�nements is shown in Figure 3.21 for the L1 and L1 norms. It is apparent thatre�nement is only bene�
ial for one or two levels of re�nement, after whi
h the error no longerde
reases, and a
tually in
reases slightly. We believe this to be the result of two tenden
ies, bothdue to the in
reasingly singular nature of the solution as we re�ne.First, we are re�ning smaller and smaller portions of the domain, so it is apparent thatlo
al improvement of the solution in a tiny portion of the domain will have little to no real e�e
t onthe global solution.Se
ond, although we are improving the a

ura
y of the solution on the interior of the�ne grids (note the steady improvement of the internal 
omponent of the trun
ation error), weare balan
ing this with the 
reation of new 
oarse-�ne interfa
es, with their asso
iated O(h) error.
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Error vs. Refinements
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ts of lo
al re�nement. Errors in (a) L1 Norm, and (b) L1 Norm
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ts of this in
reased boundary error are most apparent by looking at the trun
ation error{ although the internal 
omponent de
reases steadily as more �ne levels are added, the asso
iatedin
reased boundary error 
auses the total trun
ation error to remain 
onstant.This has impli
ations on our regridding and error-estimation strategies. For instan
e,Trompert and Verwer [67℄ in
lude the in
reased error due to interpolation errors on the 
oarse-�neboundary in their regridding 
riterion, and point out that it is best to pla
e 
oarse-�ne interfa
eswhere the solution is not strongly varying, to minimize the e�e
ts of 
oarse-�ne interfa
e errors. Also,Propp [51℄ presents a 
ux-based Ri
hardson extrapolation error estimation method whi
h a

ountsfor the surfa
e to volume ratio of the re�ned grids.
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Chapter 4Adaptive Proje
tion Algorithm

This 
hapter will des
ribe the extension of the single-grid proje
tion algorithm de�ned inChapter 2 to AMR. We will extend the adaptive algorithm developed by Berger and Colella [18℄ forhyperboli
 
onservation laws to 
onstru
t an AMR proje
tion method for solving the in
ompressibleEuler equations. For 
ontext, a brief review of the algorithm in [18℄ is in order.4.1 AMR for Hyperboli
 Conservation LawsBerger and Colella [18℄ developed a lo
ally adaptive methodology for solving hyperboli

onservation laws. Their method re�ned in time as well as spa
e, and maintained 
onservation at
oarse-�ne interfa
es.4.1.1 Conservation LawsIn [18℄, the equation being solved is a system of hyperboli
 
onservation laws, whi
h havethe form: �u�t + ��xfx + ��yfy = 0; (4.1)
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onserved quantity, and f = (fx; fy)T is the 
ux fun
tion. Integrating (4.1), usingthe divergen
e theorem: ��t Z
 udV = � Z
r � f(u)dV (4.2)= � Z�
 f(u) � ndS;where n is the normal of the boundary of 
. So, the 
hange in the integral of u over any givendomain will be equal to the integrated 
uxes through the boundary of the area.Using a 
onservative method will guarantee that u satis�es a dis
rete analog of (4.2). Intwo dimensions, a 
onservative method will take the form:Un+1 = Un � �t�x�Fn+ 12x;i+ 12 ;j � Fn+ 12x;i� 12 ;j�� �t�y�Fn+ 12y;i;j+ 12 � Fn+ 12y;i;j� 12�; (4.3)= Un ��tD(Fn+ 12 )where Uni;j is a 
ell-
entered approximation to the 
ell average of u, R xi+12xi� 12 R yj+12yj� 12 u(x; y; tn)dydx,and Fx and Fy are numeri
al approximations to fx and fy, averaged over the 
ell-edges and overthe timestep. Be
ause we use the same edge 
uxes to update the 
ells on both sides of ea
h edge,U is 
onserved. In a numeri
al s
heme, 
onservation implies that for any 
ell, or group of 
ells,the integrated 
hange in U over a time �t will be the sum of the numeri
al 
uxes F through the
ell-edges around the 
ells: X
 Un+1i;j =X
 Uni;j ��tX�
 F � n; (4.4)where P
 represents the sum over all the 
ells (i; j) in a region 
, and P�
 represents a sum overall of the 
ell edges whi
h also make up the boundary �
. (For more ba
kground on 
onservativemethods for hyperboli
 
onservation laws, see LeVeque [46℄.)To advan
e this equation on a single grid, we would follow the pro
edure outlined in
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eSoln(t;�t)FillGhostCells(t; U(t))Compute F = (Fn+ 12x ; Fn+ 12y )TU(t+�t) = U(t)� �t�x�Fn+ 12x;i+ 12 ;j � Fn+ 12x;i� 12 ;j���t�y�Fn+ 12y;i;j+ 12 � Fn+ 12y;i;j� 12�end Advan
eSoln Figure 4.1: Single-grid update for hyperboli
 
onservation lawsFigure 4.1. First, we �ll ghost 
ells around the physi
al domain with values whi
h represent theappropriate physi
al boundary 
ondition on U . Then, we step through all the edges in the domain,�rst 
omputing the edge-
entered 
uxes Fn+ 12 = (Fn+ 12x ; Fn+ 12y )T . Finally, we update U using the
onservative update (4.3).4.1.2 Adaptive MethodologyIn [18℄, blo
k-stru
tured lo
al re�nement is employed { the adaptive hierar
hy of re�nedgrids used in that work is similar in stru
ture to that des
ribed in Se
tion 3.1. In this s
heme,re�nement is temporal as well as spatial { �ne 
ells are advan
ed using a �ner timestep than is usedto advan
e 
oarser 
ells. The authors employ a re
ursive timestepping algorithm in whi
h 
oarselevels are updated, followed by su

essively �ner levels. Proper nesting of re�ned grids (see Se
tion3.1.1) ensures that interpolation of 
oarse-grid data 
an provide boundary 
onditions for the �ne-gridupdates.Re�nement in TimeMany implementations of time-dependent AMR algorithms, in
luding those in [48, 67℄ ad-van
e all levels at the same global timestep. While this results in a simpler time-stepping algorithm,
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ient and less a

urate due to the fa
t that the global timestep is restri
ted by thestability requirements of the �nest 
ells.For stability, most expli
it time-dependent s
hemes must satisfy some form of a Courant-Friedri
hs-Lewy (CFL) [31℄ 
ondition,� = max( u�x ; v�y )�t < C (4.5)where C is determined by the parti
ular s
heme being used. � is known as the CFL number.For most expli
it adve
tion s
hemes, C = 1. Note that this requires that as the mesh spa
ing isde
reased, there must be a 
orresponding de
rease in the timestep.When lo
al re�nement is used, di�erent regions of the solution have di�erent levels of spatialre�nement. If all levels are advan
ed at the same timestep, the 
oarse levels will need to be advan
edat a mu
h �ner timestep than would be di
tated by the stability requirements of the 
oarse levelsalone, in order to ensure stability at the �nest levels. This results in more 
omputational work beingdone on the 
oarse levels (where less resolution is required) than is ne
essary, and so is less eÆ
ientthan we would like. Also, the adve
tion s
hemes we are using are more a

urate at moderate CFLnumbers, and be
ome more dispersive as the CFL number goes to zero [68℄.For these reasons, when solving time-dependent equations with lo
al re�nement, we wouldlike to re�ne in time as well as spa
e. This is known as sub
y
ling. Advan
ing the �ner grids at a �nertimestep ensures that the global timestep is not held hostage to the restri
tive stability requirementsof the �ner grid.In [18℄, �ner levels are advan
ed at a �ner timestep than 
oarser ones. If level ` + 1 is afa
tor of nr̀ef �ner spatially than the 
oarser level `, then the �ner level will be advan
ed using a
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rse;�t
rse)Advan
e U
rse(t
rse)! U
rse(t
rse +�t
rse)for n = 0; nref � 1�tfine = 1nref �t
rsetfine = t
rse + n�tfineAdvan
e Ufine(tfine)! Ufine(tfine +�tfine)end forsyn
hronize(U
rse(t
rse +�t
rse); Ufine(t
rse +�t
rse))end CompositeTimeStepFigure 4.2: Pseudo
ode for 
omposite solution advan
e for two-level 
asetimestep whi
h is a fa
tor of nr̀ef �ner than the timestep on the 
oarser level:�t`+1 = 1nr̀ef �t`: (4.6)This results in a more eÆ
ient time-stepping pro
edure, sin
e all levels are advan
ed using approx-imately the same CFL number.Time-stepping StrategyFirst, 
onsider the two-level 
ase, with one 
oarse and one �ne level. Assume that we havea 
omposite solution whi
h is de�ned at time t
rse:U
omp(t
rse) = �U
rse(t
rse) on 

rseUfine(t
rse) on 
fine (4.7)The goal of 
omputation will be to advan
e the 
omposite solution to a new time t
rse +�t
rse.The timestepping strategy employed in [18℄ is to �rst advan
e the 
oarse level from t
rseto t
rse + �t
rse. (Figure 4.2) This 
oarse-grid update will be stru
tured exa
tly the same as thesingle-grid update des
ribed in Figure 4.1. Spe
i�
ally, we 
ompute Fn+ 12 ;` on 
`;�, and apply the
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e operator 
omponentwise to obtain the update for U :U := U ��tD`F`:Then, the �ne level will be updated nref times, with a timestep of �tfine = 1nref �t
rse in a similarway. Ea
h �ne-level update will be stru
tured in the same way as Figure 4.1 for ea
h �ne-level grid(re
all that the �ne level 
fine is made up of a union of re
tangular �ne-level grids), and will advan
ethe �ne-level solution from tfine to tfine+�tfine. First, we will �ll ghost 
ells around ea
h �ne-levelgrid with appropriate values. Then we 
an advan
e ea
h �ne-level grid independently, as if it werea single-grid solution. The only di�eren
e between the �ne-grid updates and the single-grid updateis that ghost 
ells may now represent boundary 
onditions from the 
oarse level or from another�ne-level grid as well as physi
al boundary 
onditions. By using ghost 
ells to enfor
e appropriateboundary 
onditions for ea
h �ne-level grid, we 
an separate the details of the AMR implementationfrom the level update, and use essentially the same update for ea
h grid as we used for the single-gridupdate. This enormously simpli�es addition of AMR 
apabilities to existing algorithms.In general, for the higher-order hyperboli
 s
hemes we will use, we will need to �ll a borderof ghost 
ells more than one 
ell wide around ea
h grid. When boundary 
onditions are 
omputed,we �ll enough ghost 
ells to 
omplete the sten
ils for ea
h 
ell in the valid domain on ea
h grid.Re
all that the boundary of a �ne-level grid 
an be either a physi
al boundary, a 
oarse-�neinterfa
e with the 
oarse level, or a �ne-�ne interfa
e with another grid in the �ne level (or somemixture of the three). Filling ghost 
ells where �
fine is a physi
al boundary is straightforward,using the the standard ghost-
ell formulation used in a single-grid update. Where �
fine is a 
oarse-�ne interfa
e with the 
oarse level, 
oarse-grid solution values U 
rse are linearly interpolated in timeto U 
rse(tfine), whi
h is possible be
ause the 
oarse level has already been updated to t
rse+�t
rse.
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rse(tfine) is interpolated in spa
e using 
onservative linear interpolation to �ll the ghost
ells around the �ne level. Finally, where a �ne-level grid abuts another grid at the same level ofre�nement, the ghost 
ells are �lled by simply 
opying Ufine(tfine) from the interiors of the other�ne-level grids. By 
opying values from the interiors of ea
h grid at the 
urrent level, we 
an makethe interfa
es between grids seamless, whi
h will make the solution independent of how the re�neddomain was de
omposed into 
onstituent re
tangular grids, whi
h is an important property of thealgorithm.The �ne grid solution will be 
omputed for U(tfine); tfine 2 ft
rse + k�tfinegnrefk=0 . Afternref timesteps, the �ne level will rea
h the same time as the 
oarse level, t
rse+�t
rse. At this point,the 
oarse and �ne solutions must be brought into agreement, a pro
ess we will 
all syn
hronization.In [18℄, syn
hronization has two goals. First, we would like to use the more a

urate �ne-levelsolution wherever possible, and we also need to ensure that the advan
e of the 
omposite solutionfrom t
rse to tfine is 
onservative.Syn
hronization of the 
oarse and �ne solutions for the hyperboli
 problem 
onsists of twosteps. First, the 
oarse-grid solution at t
rse + �t
rse is repla
ed where possible by the averaged�ne-grid solution: U
rse(tsyn
)i;j = Av(Ufine(tsyn
))i;j on P(
�ne) (4.8)where tsyn
 is the new time whi
h both the 
oarse and �ne solutions have rea
hed.Then, the 
oarse-grid solution is 
orre
ted to ensure 
onservation. For 
onservation, the
ux out of the �ne 
ells a
ross the 
oarse-�ne interfa
e must be the same as the 
ux into the 
oarse
ells through the interfa
e. For example, 
onsider a 
ase where the 
oarse-�ne interfa
e is to theleft of 
ell (i; j) (Figure 4.3). In this 
ase, we used F 
rsex;i� 12 ;j to 
ompute the update for 
ell (i; j).
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Figure 4.3: Coarse and �ne 
uxes a
ross the 
oarse-�ne interfa
e.However, on the �ne side of the 
oarse-�ne interfa
e, the 
ux a
ross the (i� 12 ; j) edge during thesame interval was 1nref PhF finei, where the h�i notation represents a spatial average over the �needges whi
h overlay the 
oarse-
ell edge (i� 12 ; j). The sum is over the sub
y
led �ne-level timesteps,and the fa
tor 1nref a

ounts for the fa
t that �tfine = 1nref �t
rse. For 
onservation, we requirethat the same 
uxes be used in the updates on both the 
oarse and �ne side of the interfa
e. Asa rule, we 
onsider the �ne-grid information to be more a

urate, so we would like to update the
oarse-grid 
ells adja
ent to the interfa
e using the 
uxes 
omputed during the �ne-grid updates.For 
ell (i; j), this means that the update (4.3) must be modi�ed to use the �ne-grid 
omputed
uxes:Un+1;
rsei;j = Un;
rsei;j ��t
rse�x �F 
rsex;i+ 12 ;j� 1nref XhF finex ii� 12 ;j���t
rse�y �F 
rsey;i;j+ 12 �F 
rsey;i;j� 12�: (4.9)Adding and subtra
ting dt
rse�x
rseF 
rsex;i� 12 ;j from (4.9), we getUn+1i;j = Un;
rsei;j � �t
rse�x �F 
rsex;i+ 12 ;j � F 
rsex;i;j� 12���t
rse�y �F 
rsey;i;j+ 12 � F 
rsey;i;j� 12� (4.10)
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rse�x � 1nref XhF finex ii� 12 ;j � F 
rsex;i;j� 12�Noti
e that we have re
overed the original single-grid update (4.3) with a 
orre
tion for the e�e
t ofthe �ne grid. This �ne-grid 
orre
tion 
an be expressed using the 
ux register and re
ux-divergen
enotation of Se
tion 3.1.2. If we de�ne the 
ux register ÆF fine as the di�eren
e in the 
oarse and�ne 
uxes: ÆF fine = 1nref XhF finei � F 
rse (4.11)and use the re
ux divergen
e operator DR de�ned in Se
tion 3.1.2, then (4.10) 
an be written:Un+1i;j = Un;
rsei;j � �t
rse�x �F 
rsex;i+ 12 ;j � F 
rsex;i;j� 12���t
rse�y �F 
rsey;i;j+ 12 � F 
rsey;i;j� 12� (4.12)��t
rseDR(ÆF fine):= Un;
rsei;j ��t
rseD
rse(F 
rse)i;j ��t
rseDR(ÆF fine)i;jWe will 
all the operation of 
orre
ting the 
oarse grid solution by subtra
ting the re
ux-divergen
eof the mismat
h in 
uxes re
uxing.So, the 
oarse grid solution 
an be 
orre
ted to enfor
e the 
ux-mat
hing 
ondition requiredby 
onservation by a simple re
uxing operation, whi
h 
an be performed separately from the 
oarse-grid update. In the 
ase of re�nement in time, as in the algorithm of [18℄, the re
uxing operationis performed during the syn
hronization step, after al step, after all of the relevant 
oarse and �neupdates have been performed.On
e the �ne solution has been averaged onto the 
oarse level and the 
oarse 
uxes havebeen 
orre
ted by re
uxing, then the advan
e of the 
omposite solution from time t
rse to t
rse +�t
rse is 
omplete.
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t+ t∆

0

t
level 0 level 2level 1Figure 4.4: S
hemati
 of sub
y
led timestep4.1.3 Re
ursive Timestepping AlgorithmThe two-level algorithm in the previous se
tion is generalized in [18℄ for any number oflevels by rede�ning the algorithm as a series of re
ursive single-level advan
es. Figure 4.4 shows asample global timestep with 2 levels of re�nement; the �rst level of re�nement is a fa
tor of 2 �nerthan the base level, while level 2 is a fa
tor of 4 �ner than level 1. To update the 
omposite solution,we do a level advan
e for level 0 from time t0 to time t0 +�t0. Then, we perform a level advan
eon level 1, with �t1 = 12�t0. Sin
e the timestepping is re
ursive, we then will do 4 level advan
eson level 2, ea
h with a timestep of �t2 = 14�t1. This will bring level 2 and level 1 to the same time.We then syn
hronize levels 1 and 2. On
e level 1 and level 2 have been syn
hronized, level 1 
an beadvan
ed again. On
e again, �t1 = 12�t0. Then, level 2 is advan
ed four times with �t2 = 14�t1.At this point, all the levels have rea
hed the new 
oarse time. So, we then syn
hronize all of the
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e(`; t`;�t`)�llGhostCells(t)
ompute Fx̀; FỳU `(t` +�t`)i;j = U `(t`)i;j � �t`�x �Fx̀;i+ 12 ;j � Fỳ;i� 12 ;j���t`�y �Fỳ;i;j+ 12 � F `̀;i;j� 12 �Update Flux Registers:if (` < `max) ÆF `+1 = �F` � n`+1CF on �
`+1if (` > 0) ÆF ` = ÆF ` + 1n`�1ref hF` � nC̀F i on �
`if (` < `max) thenfor n = 0; nr̀ef � 1�t`+1 = 1nr̀ef �t`t`+1 = t` + n�t`+1LevelAdvan
e(`+ 1; t`+1;�t`+1)end forU `(t` +�t`) := U `(t` +�t`)��tDR(ÆF `+1)end ifend LevelAdvan
eFigure 4.5: Pseudo
ode for re
ursive timestep used for hyperboli
 
onservation laws in Berger and Colellalevels, whi
h will result in the �nal 
omposite solution at time t0 +�t0.The fun
tion LevelAdvan
e(`; t`;�t`) (Figure 4.5) will advan
e the level ` solution fromtime t` to time t`+�t`. Be
ause this fun
tion is re
ursive, all �ner levels (whi
h initially will also beat time t`) will also be advan
ed to the new time, and the appropriate syn
hronization operations willbe performed so that the entire 
omposite solution for levels `::`max will be advan
ed to the new time.So, to advan
e the entire solution from time t0 to time t0 +�t0, we 
all LevelAdvan
e(0; t0;�t0),whi
h will advan
e the entire 
omposite solution through a series of re
ursive level advan
es.On
e the ghost 
ells have been �lled in the same way as the two-level 
ase, ea
h grid in level
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an be updated independently, using the same update method as in the single grid 
ase. First,we 
ompute the 
uxes Fx and Fy for ea
h edge. Then, we 
ompute the update to U ` using thesingle-grid update de�ned by (4.3). At this point, the appropriate 
ux registers are updated. If a�ner level exists, then the level `+1 
ux register is initialized with the 
oarse level 
ux (�F` �n`+1CF ),where n`+1CF is the lo
al normal of the 
oarse-�ne interfa
e between levels ` and ` + 1. If a 
oarserlevel exists, then the level ` 
ux register is in
remented with the �ne-level 
ux from this timestep.On
e all the 
ells in level ` have been updated to time t`+�t`, we 
an re
ursively advan
eany �ner levels, using the same timestepping pro
edure. The �ner level `+1 is advan
ed nr̀ef times,starting at the level ` initial time t`. The �ne timestep will be �t`+1 = 1nr̀ef �t`.On
e the �ne level has been advan
ed nr̀ef times, it has rea
hed the same time as the level` solution, whi
h is t` + �t`. At this time, the solutions on levels ` and ` + 1 are brought intoagreement: the level ` solution U `(t`+�t`) is repla
ed by the averaged �ne solution U `+1(t`+�t`)wherever level ` is 
overed by re�nement, and the level ` solution is 
orre
ted by re
uxing themismat
h of �ne and 
oarse 
uxes to ensure 
onservation.4.2 Multilevel Dis
retization of the In
ompressible Euler equa-tionsWe would like to extend the AMR methodology developed in the previous se
tion to thesolution of the in
ompressible Euler equations by extending the single-grid algorithm presented inSe
tion 2.6. In the single-grid algorithm, we advan
e the velo
ity �eld u and a passively adve
teds
alar �eld s from time tn to time tn +�t. Also in that algorithm, a lagged pressure �eld pn+ 12 is
omputed to enfor
e the in
ompressibility 
onstraint. As in the previous se
tion, we will de�ne a
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h level u`; s` and the asso
iated pressure on ea
h level �`. Also, as in the previousse
tion, we will sub
y
le in time, so during a level ` timestep from t` to t` + �t`, the level ` + 1solution will be advan
ed nr̀ef times. So, in a single level 0 timestep, we will 
ompute solution valuesfor ea
h level ` > 0 at the following times:u`(t`); s`(t`); t` 2 ft`�1 + k�t`gn`�1ref �1k=0 : (4.13)Be
ause the pressure is lagged in this algorithm, it will also be de�ned at lagged times on ea
h level,or �`(t`); t` 2 ft`�1 + (k � 12)�t`gn`�1refk=1 : (4.14)4.2.1 Level AlgorithmTo extend the re
ursive sub
y
led algorithm of Se
tion 4.1.3 to the proje
tion algorithmdes
ribed in Se
tion 2.6, we will �rst need to express the single-grid proje
tion algorithm as a levelupdate whi
h will advan
e the level ` solution from time t` to t` +�t`. This is straightforward. Abrief outline of this level update is as follows:1. Compute adve
tion velo
ities uAD;` as in Se
tion 2.6.1, in
luding level ` edge-
entered (MAC)proje
tion for adve
tion velo
ities.2. Compute adve
tive update for s
alar:s`(t` +�t`)i;j := s`(t`)� �t`�x`�FS;`i+ 12 ;j � FS;`i� 12 ;j�� �t`�y`�FS;`i;j+ 12 � FS;`i;j� 12 �3. Compute intermediate velo
ity �eld u��;`:u��;`i;j := u`(t`)i;j ��t`[(u � r)u℄n+ 12 ;`i;j
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t intermediate velo
ity �eld to enfor
e divergen
e 
onstraint:Solve L`�`(t` + �t`2 ) = DCC;`u��;`u`(t` +�t`) := u��;` ��t`GCC;`�`(t` + �t`2 )4.2.2 Level OperatorsThe outline in the previous se
tion left open the issue of extending the 
ell-
entered opera-tors GCC and DCC de�ned in Se
tion 2.5.2 to a level-operator formulation. In most 
ases, the leveloperator will simply be the 
orresponding single-grid operator, with a suitable 
oarse-�ne boundary
ondition for use when the normal sten
ils 
ross a 
oarse-�ne interfa
e with level `�1. When de�ning
oarse-�ne boundary 
onditions for these operators, rede�ning them as edge-
entered operators withappropriate 
ell-to-edge and edge-to-
ell averaging (equations (2.62) and (2.63) ) will prove useful.As in Se
tion 4.1, use of ghost 
ells around ea
h �ne grid will simplify the appli
ation of boundary
onditions by separating the boundary 
onditions from the operator dis
retization.GradientWe �rst de�ne the level operator version of the edge-
entered gradient, G`, whi
h wewill then extend to the 
ell-
entered operator GCC;` through the use of (2.63), repeated here for
onvenien
e: GCC� = AvE!CG�: (4.15)G` will be the level-operator version of the edge-
entered gradient G, whi
h was de�ned in(2.52). On grid interiors,Gì+ 12 ;j = (�ì+1;j � �ì;j�x` ; �ì+1;j+1 + �ì�1;j+1 � �ì+1;j�1 � �ì�1;j�14�y` )T (4.16)Gì;j+ 12 = (�ì+1;j+1 + �ì+1;j�1 � �ì�1;j+1 � �ì�1;j�14�x` ; �ì;j+1 � �ì;j�y` )T :
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il 
rosses a 
oarse-�ne interfa
e with the 
oarser level `�1, we will use the quadrati
interpolation operator I from Se
tion 3.1.2 to �ll ghost 
ells around the level ` grid, whi
h will thenbe used in the normal sten
il for G`.Then, de�nition of the 
ell-
entered level-operator gradient GCC;` is straightforward, usingthe edge-to-
ell averaging operator AvE!C :GCC;`� = AvE!CG`�: (4.17)Note that the G` operator 
ontains the 
oarse-�ne boundary 
onditions for GCC;`, sin
e the edge-
entered gradient is de�ned on 
oarse-�ne interfa
es with 
oarser levels through the 
oarse-�neinterpolation operator I . For this reason, it will not be ne
essary to expli
itly de�ne a 
oarse-�neboundary 
ondition for the 
ell-
entered gradient operator.Divergen
eSimilar to the level-operator gradient, we will �rst de�ne the level-operator version of theedge-
entered divergen
e operator, D`. We 
an then use (2.62) to de�ne the 
ell-
entered level-operator divergen
e DCC .Re
all that the edge-
entered divergen
e operator D is a 
ell-
entered divergen
e of edge-
entered quantities. We de�ne the level-operator D` of the edge-
entered ve
tor �eld u = (u; v)T inthe same way: D`u = uì+ 12 ;j � uì� 12 ;j�x` + vì;j+ 12 � vì;j� 12�y : (4.18)Sin
e the edge whi
h makes up the 
oarse-�ne interfa
e with the 
oarser level `� 1 is 
onsidered tobe a part of the level `, there is no need to spe
ify a 
oarse-�ne boundary 
ondition for this operator.To de�ne the 
ell-
entered divergen
e operator DCC;`, we will on
e again draw on the
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ell-
entered divergen
e operator in (2.62):DCC;`u = D`(AvC!Eu`): (4.19)where AvC!E is the 
ell-to-edge averaging operator.So, the boundary 
ondition for the level-operator 
ell-
entered divergen
e DCC;` where thesten
il 
rosses a 
oarse-�ne interfa
e with level ` � 1 is de�ned by the boundary 
onditions set foru` before averaging to edges. Examination of the level-advan
e algorithm in the previous se
tionshows that in most 
ases, the divergen
e operator will be applied to the intermediate velo
ity �eldu��;` to 
ompute the right-hand-side for the level proje
tion. Be
ause of the sub
y
led nature ofthe level ` timestep, it is not 
lear what, if any, 
oarse-grid quantity would be appropriate to use asa 
oarse-grid boundary 
ondition for u��;` (for example, u��;`�1 has the wrong 
entering in time).For this reason, it was de
ided to use linear extrapolation of u` to 
ompute ghost-
ell values for u`at 
oarse-�ne interfa
es.Adve
tive TermsWe also must 
ompute adve
tive terms in the level update, both the [(u � r)u℄` terms inthe momentum equation and the FS;` = r � (us) term in the adve
tion update, as well as in the
omputation of the adve
tion velo
ities. This is similar to the method des
ribed in Se
tion 2.6.1,with the addition of suitable 
oarse-�ne boundary 
onditions. This part of the level advan
e hasa hyperboli
 
hara
ter to it, and is similar to the hyperboli
 
onservation laws solved in Se
tion4.1. This 
onsists of extrapolating values for u and s to edges at time (t` + �t`2 ), then using theupwinded values to 
ompute the adve
tive updates. Be
ause of the hyperboli
 nature of this partof the update, we use the same 
oarse-�ne boundary 
onditions that were used in 4.1, whi
h was
onservative interpolation of 
oarse solution values in time and spa
e. Before the tra
ing step,
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oarse-grid solution values are interpolated in time to t`, and then are 
onservatively interpolated inspa
e to �ll ghost 
ells around ea
h grid. On
e this is done, the single-grid tra
ing and upwindingalgorithm of Se
tion 2.6.1 
an be used in a straightforward manner.The 
omputation of adve
tion velo
ities in
ludes a level-operator version of the edge-
entered proje
tion des
ribed in Se
tion 2.6.1. We �rst solve:L`�` = D`(un+ 12 ;`); (4.20)and then 
orre
t the velo
ity �eld to make it divergen
e-free:uAD;` = un+ 12 ;` �G`�` (4.21)Note that we have not spe
i�ed the 
oarse-�ne boundary 
ondition for �` in (4.20) and (4.21); wewill defer this issue until the spe
i�
ation of the entire adaptive algorithm in Se
tion 4.5.4.3 A Simple Re
ursive TimestepOn
e the level advan
e algorithm of the last se
tion has been de�ned, it is straightforwardto extend the methodology of Berger and Colella to the in
ompressible Euler equations. To ensureproper 
oupling between levels, the appropriate velo
ity and s
alar 
ux registers ÆV and Æs are main-tained, and 
oarse grid velo
ities and s
alars are 
orre
ted to ensure 
onservation by the re
uxingoperation des
ribed in Se
tion 4.1.2. The pseudo
ode for the re
ursive timestep for this algorithmis shown in Figure 4.6. Unfortunately, this algorithm su�ers from two signi�
ant problems. Bothof these issues were identi�ed by Almgren et al. [5℄ in the 
onstru
tion of their adaptive proje
tionmethod for the in
ompressible Navier-Stokes equations.First, the 
omposite velo
ity �eld will not satisfy the divergen
e 
onstraint based on 
om-posite operators. We would expe
t that sin
e the divergen
e 
onstraint was enfor
ed using level
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e(`; t`;�t`)FillGhostCells(`; t`)Compute uAD;`Compute adve
tive 
uxes: FS;`sì;j(t` +�t`) := sì;j(t`)� �t`�x`�FS;`x;i+ 12 ;j � FS;`x;i+ 12 ;j�� �t`�y`�FS;`y;i;j+ 12 � FS;`y;i;j� 12�Update s
alar 
ux registers:if (` < `max) Æs`+1 = �FS;`` � n`+1CF on �
`+1if (` > 0) Æs` = Æs` + 1n`�1ref hFS;` � nC̀F i on �
`Compute velo
ity adve
tion [(u � r)u℄`Update velo
ity 
ux registersif (` < `max) ÆV`+1 = �(uAD;` � n`+1CF )uhalf;` on �
`+1if (` > 0) ÆV` = ÆV` + 1n`�1ref h�(uAD;` � n`+1CF )uhalf;`i on �
`u��;` := u`(t`)��t`[(u � r)u℄`Solve L`�` = DCC;`u��;`u`(t` +�t`) := u��;` ��t`GCC;`�`if (` < `max) thenfor n = 0; nr̀ef � 1�t`+1 = 1nr̀ef �t`t`+1 = t` + n�t`+1EulerAdvan
e(`+ 1; t`+1;�t`+1)end forAvgDown(s`(t` +�t`); s`+1(t` +�t`))AvgDown(u`(t` +�t`);u`+1(t` +�t`))Re
ux: s`(t` +�t`) = s`(t` +�t`)��t`DR(Æs`)Re
ux: u`(t` +�t`) = u`(t` +�t`)��t`DR(ÆV`)end ifend EulerAdvan
eFigure 4.6: Naive extension of Berger-Colella algorithm to in
ompressible Euler



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 128operators in a level-operator based level proje
tion, that the 
omposite pressure �eld � 
omputedby the level proje
tions will not satisfy the ellipti
 mat
hing 
ondition des
ribed in Se
tion 3.2.1.For example, if the initial velo
ity �eld is divergen
e-free, and (u � r)u is independent of time,enfor
ing the divergen
e 
onstraint using level proje
tions 
orresponds to Diri
hlet-only mat
hingfor the pressure solve. An equivalent statement is that there is no sense in whi
h the jump in thenormal velo
ities [u �nCF ℄ is zero at 
oarse-�ne interfa
e. Another issue is that velo
ity re
uxing hasmodi�ed the 
oarse-level velo
ity �elds in a row of 
ells one-
ell wide around 
oarse-�ne interfa
eswith the �ner level. This velo
ity was not in
luded in the 
oarse-level level proje
tion, and so will
ause a violation of the divergen
e 
onstraint.Also, this s
heme will not be freestream preserving. Although we proje
t the adve
tionvelo
ities uAD with an edge-
entered proje
tion (Se
tion 2.6), the proje
tion we use is also based onlevel operators, and so the 
orre
tion �eld � also does not satisfy the ellipti
 mat
hing 
ondition. Thismeans that while the adve
tion velo
ities are divergen
e-free based on a level-operator dis
retization,they are not generally divergen
e-free based on 
omposite divergen
e operators.As a result, errors in adve
tion will o

ur at 
oarse-�ne interfa
es. While our adve
tions
heme will be 
onservative due to re
uxing, it will not be freestream preserving. The resultingerrors will be apparent in the evolution of a s
alar �eld whi
h is initially 
onstant throughout thedomain. Be
ause of the non-solenoidal nature of the adve
tion velo
ity �eld, this s
alar, whi
hshould maintain its 
onstant value throughout its evolution, will begin to show errors at 
oarse-�neinterfa
es, as it sees the e�e
ts of lo
al 
ontra
tions and expansions of the non-solenoidal adve
tionvelo
ity �eld at the 
oarse-�ne interfa
es.For example, 
onsider the two-level 
ase. Assume that a s
alar s has a 
onstant value s0



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 129in a region surrounding a 
oarse-�ne interfa
e. In this 
ase, the 
oarse-grid update will produ
e the
orre
t solution, be
ause the 
uxes based on the 
oarse-grid solution will balan
e and lead to no net
hange in s. The 
ux register for this 
oarse-�ne interfa
e will 
ontainÆs`+1 = �s0uAD;` � nCF + 1nref Xhs0uAD;`+1 � nCF i= s0��uAD;` � nCF + 1nref XhuAD;`+1 � nCF i�; (4.22)where uAD is the adve
tion velo
ity, the summation is over the sub
y
led �ne-level timesteps, andthe hi denotes an arithmeti
 average of the �ne-level edge-
entered values on the 
oarse-�ne interfa
e.Sin
e the 
oarse-grid update has already produ
ed the 
orre
t solution, we would like the re
uxing
orre
tion to have no e�e
t. For that to happen, (4.22) implies that the 
oarse-grid adve
tion velo
-ities uAD;` �nCF must equal the average of the �ne-grid adve
tion velo
ities 1nref PhuAD;`+1 �nCF i:However, be
ause the 
oarse- and �ne-grid adve
tion velo
ities were 
omputed using independentTaylor extrapolations and single-level ellipti
 solves, there is no guarantee this will be the 
ase. Asa result, we expe
t that the re
uxing operation, while it preserves 
onservation of s, will generateviolations of freestream preservation, and s will not equal s0 in the 
ells immediately adja
ent tothe 
oarse-�ne interfa
e. On
e these errors have been made, they will then be adve
ted throughoutthe 
ow, 
ontaminating the solution in regions away from 
oarse-�ne interfa
es.In this work, we address these issues by 
onstru
ting a multilevel proje
tion whi
h is ap-plied at the end of ea
h 
oarse timestep, after the re
uxing operations have been performed. Thiswill ensure that the 
omposite velo
ity �eld satis�es a 
omposite divergen
e 
onstraint. Also, we willintrodu
e a supplementary adve
ted quantity to tra
k freestream-preservation errors. We 
an thenuse this quantity to 
ompute 
orre
tions to the adve
tive velo
ity �eld to make the s
heme approx-imately freestream preserving. In [5℄, these issues are resolved using somewhat di�erent te
hniques;
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omparison of the two algorithms will be deferred until Se
tion 4.6.1.4.4 Additions to Hyperboli
 Algorithm for In
ompressibleFlowAs des
ribed in the previous se
tion, a naive extension of the algorithm of Berger andColella to the in
ompressible Euler equations su�ers from two serious weaknesses, both springingfrom the fa
t that the divergen
e 
onstraint has been applied on a level-by-level basis, rather thanin a 
omposite sense. In this se
tion, we des
ribe the steps taken in this work to �x these problems.4.4.1 Composite Proje
tionWe would like our 
omposite velo
ity �eld u to satisfy the divergen
e 
onstraint (2.40)based on a 
omposite divergen
e operator, rather than one based on the level divergen
e operatorused in the level proje
tions.After the sub
y
led level solves, the resulting 
omposite velo
ity �eld will not, in general,satisfy the divergen
e 
onstraint based on 
omposite operators, even though we performed levelproje
tions on the velo
ity �eld during ea
h level solve. This is the same e�e
t seen in Se
tion 3.2.1.While we used pressure information from 
oarser levels as a boundary 
ondition for the �ner grids,this represents only a Diri
hlet boundary 
ondition for the pressure { Neumann mat
hing has notbeen enfor
ed. On
e again, the solution on the �ner levels has seen the e�e
t of the 
oarser grids,but the 
oarse-level pressure �eld has not seen the e�e
t of the �ner levels.In addition, the re
uxing operation for velo
ity has altered the 
oarse-level velo
ity �eld,adding a set of velo
ities to a ring of 
oarse 
ells one 
ell wide around the proje
tion of the �ne grids.This added velo
ity �eld was never proje
ted at all, and so a 
orre
tion must be made to ensure that
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uxed velo
ities do not 
ause the 
omposite velo
ity �eld to violate the divergen
e 
onstraint.To 
orre
t for these problems, we will de�ne a 
omposite proje
tion, whi
h will be based on
omposite operators and will be applied to the 
omposite multilevel velo
ity �eld. This proje
tionwill be applied during the syn
hronization step, after the re
uxing operations have been performed;for this reason, we will 
all this multilevel proje
tion the syn
hronization proje
tionWhile we have already de�ned the 
ell-
entered Lapla
ian operator we will use in thiswork in Se
tion 3.1.2, we will need to de�ne 
omposite analogs of the single-level 
ell-
enteredDCC and GCC operators de�ned in Se
tion 2.5.2. We expe
t that they will be similar to the
ell-
entered level operators de�ned in Se
tion 4.2.2 (whi
h already 
ontain 
oarse-�ne boundary
onditions with 
oarser levels), with the addition of 
oarse-�ne boundary 
onditions in the form ofmat
hing 
onditions with a �ner level, if it exists. As in Se
tion 3.1.2, we also expe
t that awayfrom 
oarse-�ne interfa
es, the 
omposite operator dis
retizations will redu
e to the appropriatesingle-level 
ell-
entered dis
retization. We also expe
t that de�nition of the 
ell-
entered operatorsDCC and GCC as edge-
entered operators with appropriate 
ell-to-edge and edge-to-
ell averaging(equations (2.62) and (2.63) ) will prove useful, sin
e we have already de�ned 
omposite MAC-
entered divergen
e and gradient operators in Se
tion 3.1.2.Composite Divergen
eIn Se
tion 3.1.2, we de�ned a 
omposite edge-
entered divergen
e operator. Our 
omposite
ell-
entered divergen
e operator will be similar. Away from the 
oarse-�ne interfa
e, as usual, thedivergen
e will be the normal 
ell-
entered DCC;` operator of (2.62). So, on the �ne grid, away fromthe 
oarse-�ne interfa
e, DCC;
ompu = DCC;fineufine: (4.23)
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oarse grid away from the interfa
e,DCC;
ompu = DCC;
rseu
rse: (4.24)We will on
e again need to de�ne a spe
ial 
omposite operator wherever the sten
il of thenormal 
oarse or �ne divergen
e 
rosses a 
oarse-�ne interfa
e. As seen in (2.62), the 
ell-
entereddivergen
e operator 
an be de�ned as an edge-
entered divergen
e (2.51) of edge-
entered velo
ities
reated by averaging 
ell-
entered velo
ities to edges. At 
oarse-�ne interfa
es, we will 
ompute the�ne-level edge-
entered velo
ities by using linear extrapolation to 
ompute 
ell-
entered velo
ities inghost 
ells surrounding the �ne grid, and then using these values in the standard AvC!E operatorof (2.61). We will then de�ne the appropriate 
oarse-level edge-
entered velo
ity on the 
oarse-�ne interfa
e edge as the arithmeti
 average of the edge-
entered velo
ities used to 
ompute thedivergen
es on the �ne side of the 
oarse-�ne interfa
e.So, on the �ne side of the 
oarse-�ne interfa
e,DCC;
omp;CFu = Dfine(uedge;fine) (4.25)uedge;fine = AvC!Eufinewhere ghost-
ell values for ufine along the 
oarse-�ne interfa
e are 
omputed using linear extrap-olation of the interior values of ufine, for 
onsisten
y with the level-operator divergen
e operator.On the 
oarse side of the 
oarse-�ne interfa
e,DCC;
omp;CFu = D
rse(uedge;
rse) (4.26)uedge;
rse = � huedge;finei on �
fineAvC!Eu
rse elsewhere.
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omposite edge-
entered gradient operator in Se
tion 3.1.2 when we de�nedthe \
uxes" in the 
omposite Lapla
ian operator. We will use this de�nition, along with (2.63),to 
onstru
t our 
omposite 
ell-
entered gradient operator. Sin
e most of the gradients we will be
omputing will be of quantities like pressure, whi
h are de�ned by solving an ellipti
 equation, thisis appropriate. However, we will need to alter the operator on the 
oarse side of the interfa
e dueto the stru
ture of many of the �elds to whi
h we will apply the gradient operator.We will use the edge-
entered 
omposite gradient G
omp de�ned in Se
tion 3.1.2, wherequadrati
 
oarse-�ne interpolation, along with 
ux-mat
hing, were used to de�ne the gradient op-erator at 
oarse-�ne interfa
es. We reiterate here for 
ompleteness.Away from 
oarse-�ne interfa
es, the 
omposite gradient is simply the 
oarse- or �ne-leveledge-
entered gradient of (2.52):G
omp�
omp = �G
rse�
rse on 

rseGfine�fine on 
fine (4.27)�fine = I(�fine; �
rse) on �
`On the 
oarse-�ne interfa
e, we de�ne the �ne edge-
entered gradients by using the quadrati

oarse-�ne interpolation operator from Se
tion 3.1.2 to de�ne ghost-
ell values for � along the 
oarse-�ne interfa
e, and then using the normal �ne-level G operator to 
ompute the edge-
entered gradi-ents. The 
oarse-level values for the gradient along the 
oarse-�ne interfa
e will be de�ned as thearithmeti
 average of the �ne-level gradients whi
h overlie the 
oarse edge.We 
an then average this edge-
entered 
omposite gradient to 
ell 
enters to de�ne a 
ell-
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Typical Synchronization Correction Field
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0.00 5.00 10.00 15.00Figure 4.7: Typi
al syn
hronization 
orre
tion, 
orr. Fine grid is to the right of the 
oarse-�ne interfa
e.
entered 
omposite gradient operatorGCC;
omp, as in (2.63), whi
h is repeated here for 
onvenien
e:GCC;
omp� = AvE!CG
omp�; (4.28)In pra
ti
e, the only pla
e we will a
tually apply the 
omposite 
ell-
entered gradientoperator will be during syn
hronization operations. While the dis
retization of the syn
hronizationproje
tion will be dis
ussed in the next se
tion, the stru
ture of the resulting 
orre
tion �eldsne
essitated a modi�
ation to the de�nition of the gradient operator. In most 
ases, the sour
eterms for the syn
hronization proje
tion are primarily in a set of 
ells one 
ell wide on the 
oarseside of the 
oarse-�ne interfa
e, in essen
e a Æ�fun
tion in the dire
tion normal to the interfa
e. AÆ�fun
tion sour
e distribution to Poisson's equation implies a solution whi
h, although 
ontinuous,has a dis
ontinuity in the �rst derivative (See Figure 4.7). In this 
ase, 
omputing the edge-
enteredgradients using G
omp and then averaging to produ
e a 
ell-
entered gradient will wash out the
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ture of the gradient �eld near the interfa
e be
ause the strongly positive and negative gradientson either side of the dis
ontinuity will 
an
el. The solution to this problem is to 
ompute thederivative in a one-sided way from the 
oarse side of the 
oarse-�ne interfa
e and use this one-sidedgradient for the 
oarse 
ell immediately adja
ent to the 
oarse-�ne interfa
e. This preserves thestru
ture of the 
orre
tion a
ross the 
oarse-�ne interfa
e.So, in regions of the �ne grid away from the 
oarse-�ne interfa
e, we 
ompute the 
ell-
entered gradient �elds a

ording to (2.63):GCC;
omp�
omp = GCC;fine�fine on 
�ne: (4.29)On the 
oarse grid away from the �ne grid, we likewise use the standard 
oarse dis
retization:GCC;
omp�
omp = GCC;
rse�
rse on 

rse: (4.30)On the �ne side of the 
oarse-�ne interfa
e, we �rst use the quadrati
 interpolation operator (Se
tion3.1.2) to 
ompute 
ell-
entered �ne-grid ghost-
ell values. Then, following (2.63), we 
ompute edge-
entered gradients, whi
h are then averaged to 
ell-
enters:GCC;
omp�
omp = GCC;fine�fine (4.31)�fine = I(�fine; �
rse) on �
�neOn the 
oarse side of the 
oarse-�ne interfa
e, we will use linear extrapolation of the edge-
entered gradients to provide an edge-
entered gradient on the 
oarse-�ne interfa
e. For example,if the 
oarse-�ne interfa
e is lo
ated at the (i � 12 ; j) edge (see Figure 4.8), then we 
ompute the
ell-
entered gradient at 
oarse 
ell (i; j) as follows:(Gedge;
rse�)i� 12 ;j = 2(Gedge;
rse�)i+ 12 ;j � (Gedge;
rse�)i+ 32 ;j (4.32)(GCC;
omp�)i;j = AvE!C(Gedge;
rse�):
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i- - 3Figure 4.8: Computing the 
omposite gradient on the 
oarse side of a 
oarse-�ne interfa
e for 
ell (i; j),when 
oarse-�ne interfa
e is lo
ated at (i� 12 ; j) edge. Edge-
entered gradient at (i� 12 ; j) is 
omputedby linear extrapolation of edge-
entered gradients at (i+ 12 ; j) and (i + 32 ; j). Edge-
entered gradients at(i+ 12 ; j) and (i� 12 ; j) are averaged to 
ell 
enter to get G
omp� at (i; j)Away from the 
oarse-�ne interfa
e, Gedge;
rse� will be the edge-
entered gradient of (2.52).Dis
retization of Composite Proje
tionDuring the syn
hronization step, we will perform a syn
hronization proje
tion to ensurethat the velo
ity �eld satis�es the 
omposite divergen
e 
onstraint. If we separate the pressure �eldinto the 
ontribution from the level proje
tions and the remaining 
orre
tion,p = � + es; (4.33)then 
onstru
ting the syn
hronization proje
tion be
omes straightforward. Sin
e the 
orre
tion dueto � has already been in
luded in the velo
ities, we now use es to enfor
e the 
omposite 
onstraintby �rst solving: L
ompes = 1�tsyn
DCC;
ompu(tsyn
) (4.34)e`bases = I(e`bases ; e`base�1s )
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al boundary 
onditions (if ne
essary), and then 
orre
ting the velo
ity �eld:unew = unew ��tsyn
GCC;
ompes (4.35)e`bases = I(e`bases ; e`base�1s );where GCC;
omp is the one-sided 
omposite gradient operator de�ned in Se
tion 4.4.1, and �tsyn
is the timestep of the 
oarsest level whi
h is at tsyn
, in essen
e the timestep over whi
h the syn-
hronization is being applied. The appropriate physi
al boundary 
onditions for es will be thehomogeneous form of the boundary 
ondition applied to the level pressure �. For solid walls, thiswill be a homogeneous Neumann boundary 
ondition.The proje
tion dis
retization we are using is approximate, in the sense thatDCC;
ompGCC;
omp 6=L
omp, where L
omp is the 5-point Lapla
ian operator, L
omp = D
ompG
omp (D
omp and G
omp arethe edge-
entered divergen
e and gradient operators). In this 
ase, the dis
rete proje
tion operatoris: P = I �AvE!CG
omp(L
omp)�1D
ompAvC!E : (4.36)The use of the averaging operators are what make this proje
tion approximate. Be
ause the dis-
retization of the proje
tion operator used in this work is approximate, the proje
tion is not idem-potent; in other words, P 2 6= P .We would like to show that repeated appli
ation of the 
omposite proje
tion will be wellbehaved, in that it will be stable, and that the resulting velo
ity �eld will 
onverge to to a 
onsistentsolution. For a uniform grid with periodi
 boundary 
onditions, Lai [44℄ showed using Fourieranalysis that this proje
tion dis
retization is stable, in that jjP jj � 1, and that repeated appli
ationof the proje
tion will drive the divergen
e to zero, orDCC;
omp(PNu)! 0
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Max(div) vs. # of Projection Applications
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0.00 50.00 100.00Figure 4.9: Max(divergen
e) vs. number of repeated proje
tion appli
ationsas N !1, where PN(u) represents the repeated appli
ation of the proje
tion N times.To demonstrate the e�e
tiveness and stability of this 
omposite proje
tion, we repeatedlyapplied the 
omposite proje
tion to a sample problem and evaluated the results. This was performedon the three-vortex test 
ase des
ribed in Se
tion 6.1.3. Figure 4.9 shows Max(D
ompu) againstthe number of times the proje
tion was applied. It 
an be seen that the 
omposite divergen
e doesgo to zero as the proje
tion is repeatedly applied. Adding more levels of re�nement a�e
ts therate that the divergen
e is de
reased, but does not appear to a�e
t the general behavior. Also,we would expe
t that ea
h new proje
tion has a smaller e�e
t on the solution, as the velo
ity �eld
onverges toward one whi
h is 
ompletely divergen
e-free. The amount that ea
h appli
ation of theproje
tion 
hanges the solution (in other words, Pn�Pn+1) is equal to (I�P )Pn, whi
h from (2.46)is just the gradient pie
e, GCC;
ompe. Figure 4.10 shows max(GCC;
omp(e)), whi
h is the maximumthat the solution is 
hanged in a given appli
ation of the proje
tion. As 
an be seen, this quantityde
reases monotoni
ally as the proje
tion is repeatedly applied. The magnitude of the 
orre
tion is
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Max(Grad(phi)) vs. # of Projection Applications
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1e+00
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0.00 50.00 100.00Figure 4.10: Max of the gradient pie
e returned by the proje
tion vs. number of repeated proje
tionappli
ations.mu
h larger in the �rst appli
ation of the proje
tion be
ause that is where the physi
al boundary
ondition (solid walls, in this 
ase) is being enfor
ed; the velo
ity �eld is initialized as if it were inin�nite spa
e, and then the initial proje
tion also enfor
es the physi
al boundary 
onditions.4.4.2 Freestream PreservationTo 
orre
t errors in freestream preservation, we follow the volume-dis
repan
y approa
hused by Propp [51℄, whi
h in turn is based on work by A
s et al. [1℄, and Trangenstein and Bell [66℄.We start with a s
alar �eld initialized to one everywhere in the domain, whi
h we shall 
all�. As we advan
e the solution, we also 
ompute adve
tive updates to �, using (2.66) and followingthe algorithm detailed for passive s
alars in Se
tions 2.6.2 for the single-grid 
ase, and whi
h will bedes
ribed in 4.5.2 for the multilevel 
ase. Sin
e we know that � should remain one, � 6= 1 is a goodindi
ator of the adve
tion errors that are being made.We will 
ompute a 
orre
tion to the adve
tion velo
ities whi
h will return � to one, undoing
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h have been made. Sin
e we are 
orre
ting for errors in the adve
tion velo
ities, we
ast the 
orre
tion as a velo
ity �eld up whi
h we add to the adve
tion velo
ities. We would like our
orre
tion velo
ity �eld to undo freestream errors whi
h are manifest by � 6= 1. From the adve
tionequation (2.66), D(u�) = �n � �n+1�t : (4.37)Sin
e we would like to return � to 1, we set �n+1 to one. Also, we assume that the errors in � aresmall, and so we treat the � inside the divergen
e as 
onstant and pull it outside the divergen
e:D(up + uAD) = �n � 1��t : (4.38)Sin
e uAD is essentially divergen
e-free, DuAD � 0, and we are left with the 
orre
tion �eld. If wede�ne the 
orre
tion �eld uP as a gradient, up = Ge�; (4.39)then we are left with an ellipti
 equation to solve:Le� = �n � 1��t ; (4.40)where L is the Lapla
ian operator. Similar to the proje
tion operator, the physi
al boundary 
on-ditions for e� are re� = up � n; (4.41)whi
h in the 
ase of solid walls redu
es to a homogeneous Neumann boundary 
ondition on e�.Solving (4.40) for e�, we 
an then 
ompute the 
orre
tion velo
ity �eld up = G
ompe�,whi
h we then add to the adve
tion velo
ity �eld in future timesteps. Sin
e this will be done as a
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hronization operation, we will take �t to be �tsyn
. Note that both up and uAD have edge-
entering. The 
orre
tion velo
ity �eld up will tend to 
orre
t the errors made in adve
tion and willwork to drive � ba
k to one.In pra
ti
e, we make two modi�
ations to (4.40). First, we assume that the � in thedenominator of the right hand side is approximately one. In that 
ase, the right hand side be
omes��1�t . This 
hange is made to ensure that the ellipti
 equation is solvable. Also, we in
lude a s
alingterm, �, to adjust the strength of the 
orre
tion. So, the equation we solve during the syn
hronizationstep is: Le� = �� 1�tsyn
 � (4.42)e`base� = I(e`base� ; e`base�1� ) on �
`base :Note that we have expli
itly in
luded the 
oarse-�ne boundary 
ondition for the 
ase where `base > 0.In this usage, the parameter � has a meaning { it is the re
ipro
al of the number of `base timestepsit will take for � to return to one. We have found that values for � whi
h are greater than one areunstable, be
ause they introdu
e an over
orre
tion. If we express the modi�ed evolution of � using(4.42), we �nd that it is a forward-Euler update of the equationD�Dt = ��t (�� 1): (4.43)For values of � greater than one, the forward Euler s
heme we are using is unstable. So, � � 1 forstability. We have found that � = 0:9 has worked well for the problems examined in this work.When the gradient �eld up is added to the adve
tive velo
ity �eld uAD, then uAD is nolonger divergen
e-free, even in the grid interior regions. For this reason, we must use 
onve
tivedi�eren
ing when 
omputing the adve
tive terms of the velo
ity update, rather than a 
onservative
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retization. This is why the single-grid algorithm outlined in Se
tion 2.6 employs 
onve
tivedi�eren
ing when 
omputing the adve
tive terms in Se
tion 2.6.3.4.5 Complete Multilevel AlgorithmThe following se
tions will des
ribe the re
ursive timestep used to advan
e the solution onlevel ` from time t` to t`+�t`. A basi
 pseudo
ode outline of our re
ursive level update is shown inFigure 4.11. Like the re
ursive timestep for hyperboli
 
onservation laws des
ribed in Se
tion 4.1.3,the level ` timestep impli
itly in
ludes the sub
y
led advan
e of all �ner levels and syn
hronizationwith those levels, produ
ing a 
omposite solution for levels �ner than and in
luding level `.The syn
hronization strategy will be somewhat di�erent, however. In Se
tion 4.1.3, levelsare syn
hronized in 
oarse-�ne pairs. For example, in a three-level solution, at the end of a level 0timestep, they �rst syn
hronize levels 1 and 2, and then syn
hronize levels 0 and 1. In this work,we will perform syn
hronization operations whi
h involve ellipti
 solves over all levels whi
h haverea
hed the same time, whi
h we will 
all tsyn
. We do this be
ause of the results of Se
tion 3.3, inwhi
h it was shown that stru
turing a multilevel ellipti
 solution as a series of level solves and thenmaking 
orre
tions to 
oarse-�ne pairs of levels is less a

urate than performing a single multilevelsolve. This means that the ellipti
 solves used in the 
omposite proje
tion and in the freestreampreservation algorithm will be performed for all levels whi
h have rea
hed tsyn
. This is done bytesting to see if the `� 1 level has rea
hed the time tsyn
 before performing a syn
hronization withthe 
urrent level ` as `base.We will now des
ribe ea
h step in the algorithm in turn.
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e(`; t`;�t`)Compute Adve
tion Velo
ities uAD;`Compute Adve
tive Fluxes FS;`;F�;`Compute Adve
tive Updates:sì;j(t` +�t`) := sì;j(t`)� �t`�x`�FS;`x;i+ 12 ;j � FS;`x;i� 12 ;j�� �t`�y`�FS;`y;i;j+ 12 � FS;`y;i;j� 12 ��ì;j(t` +�t`) := �ì;j(t`)� �t`�x`�F�;`x;i+ 12 ;j � F�;`x;i� 12 ;j�� �t`�y`�F�;`y;i;j+ 12 � F�;`y;i;j� 12�Predi
t uhalfu��;`i;j = uì;j(t`)��t[(u � r)u℄n+ 12i;jUpdate adve
tive and velo
ity Flux Registers:if (` < `max) thenÆs`+1 = �FS;` � n`+1CF on �
`+1Æ�`+1 = �F�;` � n`+1CF on �
`+1ÆV`+1 = �(uAD;` � n`+1CF )uhalf;` on �
`+1end ifif (` > 0) thenÆs` = Æs` + 1n`�1ref hFS;` � nC̀F i on �
`Æ�` = Æ�` + 1n`�1ref hF�;` � nC̀F i on �
`ÆV` = ÆV` + 1n`�1ref h(uAD;` � nC̀F )uhalf;`i on �
`end ifProje
t u��;` ! u`(t` +�t`) :Solve L`�` = 1�t`DCC;`u��;`u`(t` +�t`) = u��;` ��t`GCC;`�`if (` < `max)�t`+1 = 1nr̀ef �t`for n = 0; nr̀ef � 1EulerLevelAdvan
e(`+ 1; t` + n�t`+1;�t`+1)end forif (t` +�t` < t`�1 +�t`�1) Syn
hronize(`; t` +�t`; t`)end ifend EulerLevelAdvan
eFigure 4.11: Re
ursive level timestep for the in
ompressible Euler equations.



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 1444.5.1 Computing Adve
tion Velo
itiesFirst, we need to 
ompute adve
tion velo
ities with whi
h to 
ompute adve
tive updatesfor s
alars and velo
ities. This will be similar to the single-level algorithm in Se
tion 2.6.1. First, wemust �ll ghost 
ells around ea
h grid on this level. Coarse-�ne boundary 
onditions are 
omputed by
onservative linear interpolation in spa
e and time of the velo
ities on the 
oarser level. On
e again,be
ause we have already advan
ed the level `� 1 solution to time t`�1 +�t`�1, we will be able tointerpolate the old and new 
oarse-level solutions u`�1(t`�1) and u`�1(t`�1 +�t`�1) in time to t`.Then u`�1(t`) is spatially interpolated using 
onservative linear interpolation to �ll the ghost 
ellsaround the level ` grids. Due to the sten
ils involved in the predi
tor step, it is ne
essary to �ll aring of ghost 
ells more than one 
ell thi
k to have all the ne
essary information for this step. On
eagain, ghost 
ells in zones where level ` grids abut ea
h other are �lled by 
opying u`(t`) solutionvalues from the interiors of other level ` grids, and physi
al boundary 
onditions are set in the sameway as for the single-grid problem.On
e the ghost 
ells have been �lled, we then predi
t edge-
entered velo
ities un+ 12 inexa
tly the same way as was done in Se
tion 2.6.1. We �rst use a Taylor extrapolation to predi
tleft and right (top and bottom for the y�dire
tion) edge-
entered values at time t` + �t`2 , and then
hoose the upwind state at ea
h edge.Then we perform an edge-
entered proje
tion on these predi
ted velo
ities to ensure thatthe adve
tion velo
ities are divergen
e-free. This is also a straightforward extension of the single-gridedge-
entered proje
tion des
ribed in Se
tion 2.6.1. We �rst 
ompute the edge-
entered divergen
eof un+ 12 ;` using the operator D`. Note that there are no expli
it 
oarse-�ne boundary 
onditionsne
essary for this operator, be
ause we have predi
ted edge-
entered velo
ities along the boundary
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oarse-level velo
ities. We then solveL`�` = D`un+ 12 ;` (4.44)�` = I(�`; �t2 [�`�1 + e`�1s ℄) on �
`: (4.45)The 
oarse-�ne boundary 
ondition on �` is designed to ensure mat
hing with the total pressure�eld, whi
h is � + es. We solve for �` using the level solver algorithm outlined in Se
tion 3.2.6.We then 
orre
t the edge-
entered adve
tion velo
ities as in Se
tion 2.6.1, using the level-operator version of the edge-
entered gradient:uAD;` = un+ 12 ;` �G`�` (4.46)�` = I(�`; �t`2 [�n� 12 ;`�1 + e`�1s ℄):Finally, we in
lude the e�e
ts of the freestream preservation 
orre
tion from Se
tion 4.4.2:uAD;` = uAD;` + up (4.47)where up = G
ompe�.4.5.2 S
alar Adve
tionOn
e we have the adve
tion velo
ities uAD;`, we 
an 
ompute the updated s
alar �elds,s(t` + �t`). As in the velo
ity predi
tor, the s
alar predi
tor will use interpolated 
oarse-levelboundary 
onditions for s`, interpolated in time and spa
e using 
onservative interpolation. On
ethe boundary 
onditions have been set, the s
alar update follows the algorithm outlined in Se
tion2.6.2. First, we 
ompute edge-
entered upwinded values for sn+ 12 ;`, and then use these to 
omputethe 
uxes, whi
h we use to perform the s
alar update:s`(t` +�t`) = s`(t`)��tD`(uAD;`sn+ 12 ;`) (4.48)
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ipating the re
uxing 
orre
tion whi
h will be performed later, we initialize and/orupdate 
ux registers as ne
essary with the 
uxes. If a �ner level exists, we initialize the level `+ 1
ux registers with the 
oarse-level 
uxes, and if ` > 0, we update the level ` 
ux registers with �ne
uxes as detailed in Figure 4.11. The ve
tor nC̀F is the lo
al normal of the 
oarse-�ne interfa
e forlevel `. We also advan
e �`, the freestream preservation indi
ator, in the same way as the adve
teds
alars s`. The level `=` + 1 
oarse-�ne mismat
h information for � is stored in the 
ux registersÆ�`+1, whi
h are analogous to Æs`+1.4.5.3 Velo
ity Predi
torAs in the single-grid algorithm, we now 
ompute the adve
tive 
omponent of the velo
ityupdate. Using the adve
tion velo
ities uAD;`, we now predi
t the tangential 
omponents of theedge-velo
ities uhalf;` as in Se
tion 2.6.3. As before, we use 
onservative linear interpolation in timeand spa
e from the 
oarse-level data to �ll a ring of ghost 
ells around �ne-grids for use in thepredi
tion step. Also, as in Se
tion 2.6.3, we must now in
lude the e�e
ts of G`�` in these predi
tedvelo
ities.The 
omputation of adve
tion velo
ities in the multilevel algorithm di�ers from the singlelevel algorithm in the addition of up̀ to 
orre
t for 
oarse-�ne errors. In the single-grid algorithm, weuse the edge-
entered uAD;` as the edge-
entered uhalf;` normal to the 
ell edges. In the adaptivealgorithm, we must �rst remove the e�e
ts of up from uAD;`:uhalf;`i+ 12 ;j = uAD;`i+ 12 ;j � up;i+ 12 ;j (4.49)vhalf;`i;j+ 12 = vAD;`i+ 12 ;j � vp;i;j+ 12 :
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t edge-
entered uhalf;`2. u��;` = un;` ��t`[AvE!C(uAD;`) �G`uhalf;`℄3. Update velo
ity 
ux registers:� If ` < `max; ÆV`+1 = �(uAD;` � n`+1CF )uhalf;` on �
`+1� If ` > 0; ÆV` = ÆV` + 1n`�1ref h(uAD;` � n`+1CF )uhalf;`i on �
`Figure 4.12: Velo
ity predi
tor portion of level advan
e algorithmIn essen
e, we are dis
riminating between the adve
ting velo
ity �eld uAD;` and the adve
ted velo
ity�eld uhalf;`.On
e the edge-
entered velo
ities have been 
omputed, we 
ompute the adve
tive terms[(u � r)u℄n+ 12 ;` using equations (2.87). Note that uAD;` 
ontains the e�e
ts of the freestream preser-vation 
orre
tion up. Sin
e we have 
omputed all ne
essary edge velo
ities, there are no expli
it
oarse-�ne boundary 
onditions ne
essary for this step. The intermediate velo
ity u��;` 
an now be
omputed, using (2.88).As in the s
alar update, we now anti
ipate the velo
ity re
uxing in the syn
hronization stepby initializing and/or updating velo
ity 
ux registers. If a �ner level exists, we initialize its velo
ity
ux register with the velo
ity 
uxes a
ross the 
oarse-�ne interfa
e, (uAD;` �n`+1CF )uhalf;`. If a 
oarserlevel exists, we in
rement it with the average of the velo
ity 
uxes a
ross the interfa
e. Note thatwe will be re
uxing both normal and tangential 
omponents of velo
ity, so in two dimensions, the
ux register ÆV has two 
omponents. See Figure 4.12.
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tionOn
e u��;` has been 
omputed, all that remains in the level advan
e is to perform the levelproje
tion, whi
h will approximately enfor
e the divergen
e 
onstraint using level operators. Similarto the single-level proje
tion in Se
tion 2.6.4, we solve:L`�`(t` + 12�t`) = 1�t`DCC;`u��;` (4.50)�`(t` + 12�t`) = I(�`(t` + 12�t`); �`�1(t` + 12�t`)) on �
`where �`�1(t` + 12�t`) denotes linear interpolation or extrapolation of �`�1 in time using the oldand new 
oarse pressures �`�1(t`�1 � 12�t`�1) and �`�1(t`�1 + 12�t`�1). Equation (4.50) is solvedusing the level solver algorithm des
ribed in Se
tion 3.2.6. The velo
ity on the 
urrent level is then
orre
ted with the gradient of �`:u`(t` +�t`) = u�� ��tGCC;`�`(t` + 12�t`) (4.51)�`(t` + 12�t`) = I(�`(t` + 12�t`); �`�1(t` + 12�t`)) on �
`:4.5.5 Sub
y
led Advan
e of Finer LevelsIf a �ner level `+1 exists, it is now advan
ed nr̀ef times with �t`+1 = 1nr̀ef �t`. Impli
it inthe sub
y
led advan
es of level `+1 are the sub
y
led advan
es of all levels �ner than `+1 and anyne
essary intermediate syn
hronizations between level `+ 1 and �ner levels. On
e this is 
omplete,all levels �ner than level ` will also be at t` +�t`.4.5.6 Syn
hronizationAt this point, we syn
hronize level ` will all �ner levels. As mentioned earlier, we �rst 
he
kto see if a 
oarser level has also rea
hed the same time as the 
urrent level. If this is the 
ase, we
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hronize(`base; tsyn
;�tsyn
)AverageDown:for ` = `max � 1; `base;�1u`(tsyn
) = Avg(u`+1(tsyn
)) on P(
`+1)s`(tsyn
) = Avg(s`+1(tsyn
)) on P(
`+1)�`(tsyn
) = Avg(�`+1(tsyn
)) on P(
`+1)end forRe
ux:for ` = `max � 1; `base;�1u`(tsyn
) := u`(tsyn
)��t`DR(ÆV`+1)s`(tsyn
) := s`(tsyn
)��t`DR(Æs`+1)�`(tsyn
) := �`(tsyn
)��t`DR(Æ�`+1)end forSyn
hronization Proje
tion:Solve L
ompes = 1�tsyn
DCC;
ompu(tsyn
) for ` � `baseu(tsyn
) := u(tsyn
)��tsyn
GCC;
ompes for ` � `baseFreestream Preservation Solve:Solve L
ompe� = (�(tsyn
�1)�tsyn
 � for ` � `baseup = G
ompe�end Syn
hronize Figure 4.13: Syn
hronization for in
ompressible Euler equations.do the syn
hronization operations for all levels whi
h are at the 
urrent time tsyn
 = t`+�t`. If wedenote the 
oarsest level whi
h has rea
hed tsyn
 as `base, we syn
hronize all levels ` � `base. Thetimestep over whi
h the syn
hronization is being performed is then �tsyn
 = �t`base . A pseudo
odedes
ription of the syn
hronization algorithm is in Figure 4.13.
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 algorithm in Se
tion 4.1, we �rst repla
e the solution on 
oarse gridswhi
h are 
overed by re�nement with averaged �ne-level solutions. This is done from the �ner levelsdown to 
oarser levels, so that the solution in all regions is repla
ed by the appropriately averaged�nest solution possible. This averaging down operation is done for the velo
ity �eld u(tsyn
) thes
alar s(tsyn
), and the freestream preservation quantity �(tsyn
).Re
uxingTo ensure 
onservation, we then perform a re
uxing operation for velo
ity and the adve
teds
alars s and �. This will be similar to the re
uxing operations des
ribed for the hyperboli
 algorithmin Se
tion 4.1, and is essentially a re
ux-divergen
e of the mismat
h of the 
uxes, whi
h have beenstored in the appropriate 
ux registers. Note that both normal and tangential (to the 
oarse-�neinterfa
e) 
omponents of velo
ity in 
oarse 
ells adja
ent to 
oarse-�ne interfa
es are updated in thisstep.Syn
hronization Proje
tionTo ensure that the 
omposite velo
ity �eld satis�es the divergen
e 
onstraint based on
omposite operators, the 
omposite proje
tion des
ribed in Se
tion 4.4.1 is applied to the 
ompositevelo
ity �eld for all levels ` and �ner. We solve:L
ompe
omps = 1�tsyn
DCC;
ompu
omp (4.52)e`bases = I(e`bases ; e`base�1s ) on �
`base



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 151for the levels `base and higher, using the multilevel solver algorithm des
ribed in Se
tion 3.2.5. Wethen 
orre
t the velo
ities for levels `base � ` � `max:u`(tsyn
) = u`(tsyn
)��tsyn
GCC;
ompes (4.53)e`bases = I(e`bases ; e`base�1s ):Freestream Preservation Corre
tionThe last syn
hronization operation is to 
ompute the freestream preservation 
orre
tionvelo
ities up. This is similar to the syn
hronization 
orre
tion in that it involves a multilevel solvefor all levels ` � `base. In this 
ase, we solve (4.42):L
ompe� = �� 1�tsyn
 � (4.54)e`base� = I(e`base� ; e`base�1� ):Then, the gradient of the 
orre
tion up 
an be 
omputed and stored for future use:up = G
ompe� for ` � `base (4.55)e`base� = I(e`base� ; e`base�1� ):This 
ompletes the syn
hronization operations, whi
h in turn 
ompletes the level `basetimestep.4.6 InitializationBefore the initial timestep for a level `, initial values for �`�1 and e`�1s will need to be
omputed for use as boundary 
onditions. Also, the initial velo
ity �eld must be proje
ted to ensurethat it satis�es the 
omposite divergen
e 
onstraint. Moreover, if a new grid 
on�guration for level
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omputation, initial values for �`, es̀, andup will need to be 
omputed for the new grids. Note that after regridding, es and up will need tobe re
omputed on the �nest un
hanged level as well.As mentioned previously, at the beginning of the 
omputation the initial velo
ity �eld mustbe proje
ted to ensure that it satis�es the 
omposite divergen
e 
onstraint. This is a straightforwardappli
ation of the Hodge-Helmholtz de
omposition (2.41), extra
ting the divergen
e-free 
omponentof the velo
ity �eld. We solve: L
ompe
ompinit = DCC;
ompu
ompinit (4.56)over the entire grid hierar
hy, using the multilevel algorithm presented in Se
tions 3.2.3 and 3.2.4.Physi
al boundary 
onditions are imposed appropriately on the velo
ity and the 
orre
tion �eld einitas in the single-grid proje
tion, des
ribed in Se
tion 2.5.1. Then, the velo
ity �eld is 
orre
ted ontothe spa
e of ve
tors whi
h satis�es the divergen
e 
onstraint:u
omp = u
ompinit �GCC;
ompe
ompinit : (4.57)As before, appropriate physi
al boundary 
onditions are applied, based on the single-level proje
tionboundary 
onditions.For initialization purposes, we will de�ne `base as the �nest un
hanged level in the gridhierar
hy. For initialization before the initial timestep, `base will be -1. The basi
 strategy will beto 
ompute a single non-sub
y
led timestep on all grids ` > `base, in the pro
ess 
omputing all therequired quantities. Be
ause the usual edge-
entered proje
tion in the adve
tion step uses es as aboundary 
ondition, we 
ompute two iterations of the initialization timestep { one in whi
h es isnot used as a 
oarse boundary 
ondition for �, and then a se
ond one where the es 
omputed in the
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oarse boundary 
ondition for �. Sin
e the initialization pro
ess is notsub
y
led, the timestep f�t will be dependent on the stability requirements of the �nest level. Inpra
ti
e, we use half of the timestep we would normally use on the �nest level:f�t = 12�t`max (4.58)= 12� �x`maxmax(u`max) ;where � is the CFL number, de�ned in (4.5)The algorithm used to initialize � and es is shown in Figure 4.14. If the initializationis being performed after a regridding operation, instead of at the initial step, then there are alsoadve
tion errors from previous timesteps whi
h mu
h be 
orre
ted as well. The adve
tion 
orre
tionup is based on the 
urrent � �eld, rather than on one 
omputed in an initialization timestep, be
ausethe goal of the freestream preservation 
orre
tion is to 
orre
t for errors whi
h have already o

urred,while the goal of the initialization timestep is to predi
t reasonable values for � and es.Initializing �To initialize �, we do a non-sub
y
led level advan
e on ea
h level greater than `base. Sin
ethe 
oarse-�ne boundary 
onditions for the edge-
entered proje
tion require e`�1s , whi
h has notyet been 
omputed, we do two passes of the initialization algorithm. During the �rst pass, es isnot available, so we use the 
oarse-level � as the boundary 
ondition for all levels greater than`base. During the se
ond pass, we 
an use the estimate for es and � 
omputed during the previoustimesteps: L`�` = D`euhalf;`�` = ( I(�`; �`�1) if n = 1I(�`; e�t2 (�`�1 + e`�1s )) otherwise



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 154EulerInit(`base; tinit)Compute f�tfor n = 1; npassesif (`base > �1)Compute eu��;`base as usualProje
t eu��;`base :Solve L`basee�`base = 1e�tDCC;`baseeu��;`baseeu`base := eu��;`base � f�tGCC;`basee�`baseend iffor ` = `base + 1; `maxPredi
t euhalf;` as in Se
t. 4.5.3Perform edge-
entered proje
tion of adve
tion velo
ities: L`�` = D`euhalf;`Corre
t adve
tion velo
ities: euAD;` := euAD;` �G`�`Predi
t euhalf;` as in Se
t 4.5.3: eu��;` = u` ��t`[AvE!C(euAD;`) � reuhalf;`℄Update velo
ity 
ux registers:if (` < `max) ÆV`+1 = �(euAD;` � nCF )euhalf;` on �
`+1if (` > 0) ÆV` = ÆV` + h(euAD;` � nCF )euhalf;`i on �
`Proje
t eu��;` ! eu`(t` +�t`) :Solve L`�` = 1e�tDCC;`eu��;`eu`(t` +�t`) = eu��;` � f�tGCC;`�`end forfor ` = `max � 1; `base;�1Re
ux: eu` := eu` � f�tDR(ÆV`+1)end forCompute initial es: Solve L
ompes = 1e�tDCC;
ompeu for ` � `baseCompute initial eup:Solve L
ompe� = (��1)�t`base � for ` � `baseup = G
ompe�end forend EulerInitFigure 4.14: Initialization algorithm for the in
ompressible Euler equations
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e eu��;` has been 
omputed, we proje
t to get the initial estimate of the level pressure�`. Note that be
ause the initialization timestep is uniformly f�t for all levels, �` will have a time
entering at tinit + 12f�t for all levels. At 
oarse-�ne interfa
es with 
oarser levels, the boundary
ondition for � will re
e
t this 
entering:�`(tinit + 12f�t) = I(�`(tinit + 12f�t); �`�1(tinit + 12f�t) on �
`: (4.59)Initializing esTo 
ompute an initial es, we �rst require a set of level-proje
ted velo
ities for all levels` � `base. We expe
t that es will 
hange on the 
oarsest un
hanged level be
ause it will re
e
tthe 
oarse-�ne interfa
e 
orre
tions for the new �ner levels. For this, we will need to 
ompute alevel-proje
ted velo
ity eu`base(tinit+f�t). For this reason, if `base 6= �1, we perform an initializationtimestep for `base as well.On
e level-proje
ted velo
ities eu`(tinit + 12f�t) have been 
omputed for all levels ` � `base,we 
an then 
ompute the initial estimate for the 
omposite pressure 
orre
tion es by performing aninitial syn
hronization proje
tion. We solve:L
ompes = 1f�tDCC;
ompeu for ` � `base (4.60)e`bases = I(e`bases ; e`base�1s );using the same multilevel proje
tion used in the usual syn
hronization proje
tion.Initializing Freestream Preservation Corre
tionFinally, when initializing a new hierar
hy of grids after a regridding operation, we will needto 
ompute a new 
orre
tion �eld for freestream preservation errors. Unlike the initializations for



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 156� and es, we use the existing solution for � at tinit, sin
e the goal in this 
ase is to 
orre
t forthe errors whi
h have already o

urred. So, the syn
hronization timestep in this 
ase will be thetimestep of the `base. As in a normal syn
hronization pro
edure, we �rst solve for e�:L
ompe� = �� 1�t`base � for ` � `base (4.61)e`base� = I(e`base� ; e`base�1� ):Then, we de�ne the 
orre
tion velo
ity �eld whi
h will be added to the adve
tion velo
ities:up = G
ompe� for ` � `base (4.62)e`base� = I(e`base� ; e`base�1� ):4.6.1 Comparison to Previous WorkVarious approa
hes have been used to 
ompute adaptive solutions to in
ompressible 
ows.To 
ompute steady-state solutions to the in
ompressible Navier-Stokes equations, Thompson andFerziger [65℄ used an adaptive multigrid method based on the adaptive multigrid algorithm originallydeveloped by Brandt [24℄.For time-dependent in
ompressible 
ows, Howell and Bell [41℄ 
onstru
ted an adaptiveproje
tion method based on the exa
t proje
tion and the proje
tion formulation of Bell, Colella, andGlaz[16℄, in whi
h there was no re�nement in time. It was noted that the de
oupled sten
il of theexa
t proje
tion 
aused 
onsiderable 
ompli
ations at 
oarse-�ne interfa
es be
ause the de
ouplingof the 
omputational grids had to be respe
ted a
ross 
oarse-�ne interfa
es.Minion [48℄ 
onstru
ted a non-sub
y
led adaptive version of the approximate 
ell-
enteredproje
tion of Lai [44℄ and the proje
tion formulation of [17℄, whi
h in
luded a multilevel edge-
enteredproje
tion for adve
tion velo
ities.
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 modeling, the anelasti
 equations for atmospheri
 motions are similar instru
ture to those for in
ompressible 
ow, with a divergen
e 
onstraint on velo
ity whi
h in
ludesthe e�e
t of atmospheri
 strati�
ation. Clark and Farley [30℄ and Stevens [59, 60℄ have 
onstru
tedadaptive methods for anelasti
 atmospheri
 dynami
s based on the proje
tion method whi
h werefully adaptive in both time and spa
e. Neither of these methods, however, enfor
ed the divergen
e
onstraint in a 
omposite sense a
ross all levels of re�nement, instead enfor
ing it on a level-by-level basis, with boundary 
onditions interpolated from 
oarser grids. The la
k of 
oupling of the
oarse-level pressures to the �ne levels has been shown [60, 5℄ to 
ause a loss of a

ura
y in the �nalsolution. Almgren et al. [5℄ have developed an adaptive proje
tion method whi
h re�nes in timeas well as spa
e and whi
h enfor
es the divergen
e 
onstraint in a 
omposite sense a
ross all levels.Their proje
tion operator is based on the nodal s
heme of Almgren, Bell, and Szym
zak [4℄, and usesthe basi
 proje
tion formulation of [16℄ as extended by Bell, Colella, and Howell [17℄. In 
ontrast withthis work, the algorithm of [5℄ proje
ts the approximation to �u�t , rather than the entire intermediatevelo
ity �eld u��.In [5℄, the timestep is stru
tured in a similar way to this work, as a series of re
ursiveupdates starting with the 
oarsest level and then using suitably interpolated 
oarse level values to
onstru
t boundary 
onditions for the �ne-grid updates. Be
ause of temporal re�nement, ea
h �nelevel solution is updated multiple times for ea
h 
oarse level update. Any time the solutions on twolevels of re�nement rea
h the same lo
ation in time, they are syn
hronized.In [5℄, ellipti
 mat
hing of the pressure �eld is also enfor
ed by means of a syn
hroniza-tion proje
tion whi
h ensures that the 
omposite velo
ity �eld satis�es the 
onstraint based on a
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omposite operator. Be
ause �u�t is being proje
ted, the 
onstru
tion of the syn
hronization proje
-tion is somewhat di�erent; the mismat
h in �u�t is stored and then used, along with the 
hange tothe 
oarse-grid velo
ity �eld 
aused by velo
ity re
uxing, to expli
itly 
ompute the sour
e for thesyn
hronization, whi
h appears as a sour
e term on the 
oarse level. Re
all that in the algorithmpresented in this work, the 
omposite velo
ity �eld is simply re-proje
ted using 
omposite operatorsto ensure that ellipti
 mat
hing is enfor
ed. Moreover, in [5℄, levels are syn
hronized in 
oarse-�nepairs, starting at the �nest level and 
ontinuing with su

essively 
oarser level `=`� 1 pairs until alllevels at tsyn
 have been syn
hronized.Freestream preservation, the property that 
onstant �elds of adve
ted quantities in in
om-pressible 
ow remain 
onstant, is enfor
ed in [5℄ by a se
ond \MAC syn
hronization" step, whi
hensures that the adve
tion velo
ities also satisfy a divergen
e 
onstraint based on 
omposite opera-tors. A se
ond adve
tion step is then performed on the 
oarse level using the 
orre
tion velo
ities,and adve
tive 
orre
tions are then interpolated to �ner levels.A third di�eren
e between the algorithm of [5℄ and the one presented in this work is inthe initialization after re-regridding. Sin
e the pressure in [5℄ is stored as a 
omposite pressure,rather than separate level-based and 
orre
tion �elds, the existing pressure �eld is interpolated toprovide an existing pressure for newly re�ned regions. Sin
e we maintain separate level pressure�` and 
orre
tion e �elds, we must 
ompute a new 
orre
tion �eld e (as well as a new freestream-preservation 
orre
tion up) after regridding to a

ount for the new grid 
on�gurations.
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tion 2.7, many resear
hers have found velo
ity �ltering to be ne
essaryto prevent spurious velo
ity modes from 
ontaminating the solutions. Some attempt was made toextend the �lters used in single-grid proje
tion algorithms to this implementation, but they wereunsu

essful. Two strategies were employed. First, an attempt was made to design a �lter with
omposite operators. When this proved unsu

essful, the �lters des
ribed in [53℄ were employed onthe interiors of grids. Be
ause the goal of �ltering is to remove os
illatory modes that the interiordis
retization of the approximate proje
tion leaves behind, it was felt that simply applying �lterson the interiors of grids would be suÆ
ient to redu
e these modes, without upsetting the mat
hing
onditions at the 
oarse-�ne interfa
es.In pra
ti
e, however, employing �lters in this way 
aused noti
eable vorti
ity generation at
oarse-�ne interfa
es. In light of this, it was de
ided to not use �ltering at the present time. Otherproje
tion method implementations have also not found �ltering to be ne
essary, in
luding that of[27℄, for example. Almgren et al. only use �ltering when ne
essary to prevent obvious degradationof the solution in the form of \
he
kerboarding" of velo
ity. [6℄ For the test problems 
omputed inthis work, we have not found serious degradation of the solutions, so implementation of �ltering forthis algorithm has been deferred.



160
Chapter 5Error Estimation

As 
an be imagined, the e�e
tiveness of adaptive methods depends strongly on appropriatepla
ement of re�nement. Almgren et al. [5℄ showed that re�ned pat
hes pla
ed without 
are didnot, in general, reap the bene�ts of in
reased resolution. We would like our error estimation 
riteriato be able to predi
t where re�nement should be pla
ed to improve the a

ura
y of the solution.There have been many di�erent approa
hes to de
iding where to pla
e re�ned pat
hes,ranging from fairly involved mathemati
al estimates of the error (for example, [19, 67℄, to fairlysimple usage of 
ow quantities of interest, su
h as vorti
ity, density gradients, or energy (for example,[5℄). In this work, we have used variations on several of these methods.In this 
hapter, we will develop the methods used to estimate where regridding is needed;at present, we use four ways to de
ide where to pla
e re�ned pat
hes:� user-de�ned grids.� user-de�ned 
riteria� Ri
hardson extrapolation



CHAPTER 5. ERROR ESTIMATION 161The �rst is not truly an adaptive re�nement te
hnique, sin
e the grids are pre-de�ned. Theremaining te
hniques are automati
, in that they require little or no user input (other than somesort of toleran
e for the 
riteria) and are adaptive, in that they are able to respond to features inthe solution as they develop.For the adaptive grid generation te
hniques, we follow a two-step pro
ess. First, we lookat the existing hierar
hy, apply our 
riteria to the 
urrent solution to \tag" 
ells in the existinggrid hierar
hy for (further) re�nement (or un-re�nement: if a 
urrently re�ned 
ell no longer needsre�nement, it is not tagged, and so is no longer in
luded in the list of 
ells to be re�ned). Then, weuse a 
lustering algorithm to group these tagged 
ells into new grids.5.1 User-De�ned GridsThe �rst, and most straightforward, method of determining grid pla
ement is to use pre-de�ned grids. This is most useful when the user has a good idea already where re�nement willbe most bene�
ial or where there is an already known feature or region of interest in the solution.However, be
ause the grid stru
tures are de�ned without dire
t intera
tion with the solution, thisis not really an \adaptive" method per se. As su
h, it is generally not as useful as fully automatedgrid generation.5.2 User-De�ned CriteriaThere are many 
ases where the user will have an idea of whi
h features are of interestor are indi
ative of a need for re�nement. To support this, 
ells 
an be tagged based on any user-de�ned solution-based 
riteria. For example, one may want to tag on areas of high vorti
ity or high
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ators of interesting features in the solution. It is 
ommon to use derivatives ofsolution quantities like velo
ity or density as indi
ators of areas of high a
tivity whi
h 
ould bene�tfrom re�nement. In many 
ases, this is suÆ
ient to improve the quality of the solution, espe
iallyif the quantity of interest also has a strong solution-based indi
ator of the ne
essity for in
reasedresolution.While this is a fully automati
 and adaptive grid generation te
hnique, it does not ne
es-sarily ensure in
reased a

ura
y of the solution. Be
ause it is not really an estimation of error, thereis no guarantee that re�nements based on solution features will improve the solution quality. Thereis always the 
han
e that important features of the solution will be missed. On the other hand,re�nement may be based on spurious features of the solution. Baker [11℄ raises the possibility thaterrors due to the grid interfa
es 
an then further ex
ite these spurious features, resulting in furthersolution degradation. Also, Sweby and Yee [64℄ demonstrated that re�nement based on solutionfeatured 
an 
ause 
haoti
 behavior in the 
ase of moving-grid re�nement.In fa
t, even re�nement based on solution error will not ne
essarily improve solution quality.In many 
ases, solution errors are nonlo
al in nature, resulting from a

umulation of dis
retizationerrors elsewhere in the domain [11℄. Minion [49℄ also shows that prevention of spurious vorti
es inin
ompressible 
ow 
an require re�nement in lo
ations other than the neighborhood of the spuri-ous feature itself. For this reason, we believe that error estimates based on lo
alized measures ofdis
retization error are a better indi
ator of where re�nement should be pla
ed for greatest bene�t.
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hardson ExtrapolationThe use of Ri
hardson Extrapolation to estimate the trun
ation error of a numeri
al solu-tion has a long and ri
h history. Berger and Oliger [19℄, Berger and Colella [18℄, and Propp [51℄ haveused it for time-dependent problems, while Berger and Jameson [21℄, Dudek [34℄, and Betten
ourt[22℄ have used it for steady-state problems. Variants of this pro
edure are also used in [21℄ and [45℄.The implementation of Ri
hardson extrapolation in this work is based on that des
ribed in Martinand Cartwright [47℄ and extended by Propp [51℄.The basi
 idea is to apply the operator L to the existing solution, 
oarsen the result, andthen 
ompare it to the operator applied to a 
oarsened version of the solution. It 
an be shown thatthe di�eren
e between the two is proportional to the lo
al trun
ation error. In terms of the existingoperators from Chapter 3:Error` = Average(L`U `)� L`�1Average(U `) (5.1)For steady-state problems, we are generally solving an equation of the form L(U) = f . For Poisson'sproblem, L is the Lapla
ian operator. For time-dependent problems, the equation we are solving is�U�t = L(U), so L is the right-hand-side of the dis
rete time evolution equation.As mentioned before, we expe
t that our s
heme will lose a

ura
y at 
oarse-�ne interfa
esand that the lo
al trun
ation error will be O(h) (one order less a

urate than the rest of the s
heme)due to the 
oarse-�ne interpolation error. For the same reasons, the s
heme will also lose a

ura
y atphysi
al boundaries, sin
e we are using a lower order approximation there as well. So, if we naivelyuse the error 
omputed using (5.1) there, we will see a large error, whi
h will appear in a single layerof 
ells on both the 
oarse and �ne sides of the interfa
es. Both in theory and in pra
ti
e, however,this error on the 
oarse-�ne interfa
es and physi
al boundaries does not a�e
t the global a

ura
y
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Figure 5.1: Repla
ing error in �ne-grid boundary 
ells (shaded) with adja
ent valuesof the s
heme, sin
e it is on a set of one dimension less than the problem spa
e. (This assumes,of 
ourse, that the surfa
e/volume ratio is of order 1h , whi
h will not be true for very small grids,where the surfa
e/volume ratio approa
hes one.)So, we do not want to use the error 
omputed by (5.1) on these 
ells; if we did, re�nedgrids would simply expand until they rea
hed the physi
al boundaries. We do not, however, want tosimply ignore the possibility that we may want to re�ne these boundary 
ells. So, for ea
h boundary
ell, we 
opy the error 
omputed on an adja
ent 
ell whi
h is untainted by the 
oarse-�ne boundaryerror. For the ellipti
 equations in [47℄, areas of high error tend to be in pat
hes, rather than single
ells; for the Euler equations, we have noti
ed similar behavior. Sin
e we are dealing with pat
hesof high error, 
opying from adja
ent 
ells is an adequate solution. On the �ne side of the 
oarse-�neinterfa
e, adja
ent 
ell values are 
opied as shown in Figure 5.1. In [47℄, 
ells on the 
oarse sideof the 
oarse-�ne interfa
e were repla
ed with averages of the adja
ent �ne-grid values (whi
h hadthemselves been repla
ed as ne
essary). In the 
ase of the Euler equations, the di�eren
es in time-
entering between solutions on ea
h level pre
lude this; instead, we simply 
opy the adja
ent 
oarse
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hardson Extrapolation for the Poisson ProblemFor the Poisson problem, the error equation (2.14) indi
ates that redu
ing the trun
ationerror should 
ertainly result in a redu
tion of the solution error. For this reason, we expe
t thattrun
ation error is an ex
ellent indi
ator of where re�nement is ne
essary to improve solution quality.Moreover, using lo
al trun
ation error as an indi
ator will lo
alize the sour
es of error. Due to theellipti
 nature of Poisson's equation, lo
al dis
retization errors will indu
e solution errors whi
h arenonlo
al in nature; using an estimate of lo
al trun
ation error to de
ide where to pla
e re�nementswill make it possible to lo
alize the sour
es of the global solution errors.Sin
e we want to estimate the error on all existing levels, in
luding those partially overlainby re�ned grids, we need to modify this pro
edure slightly. Where a grid is 
overed by a re�nedpat
h, we use the error 
omputed on the re�ned level. Sin
e we know that the error is proportionalto h2, we 
an res
ale the �ne error by ( h
hf )2 (the square of the re�nement ratio), and average it ontothe 
oarser grid. This gives a reasonable approximation of what the error in a re�ned region wouldbe if there were no re�nement.Also, sin
e for Poisson's problem there is no time 
entering of the di�erent solution levels,we 
an use the approa
h in [47℄ to repla
e the error 
omputed in 
oarse 
ells adja
ent to 
oarse-�neinterfa
es. In this 
ase, we repla
e the tainted 
oarse-
ell values with the averaged adja
ent �ne-gridvalues, as shown in Figure 5.2.
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Figure 5.2: Repla
ing error on the 
oarse side of the 
oarse-�ne interfa
e with averaged �ne-grid values(shaded).5.3.2 Ri
hardson Extrapolation for the Time-Dependent ProblemFor time-dependent problems, the operator L is the dis
rete time evolution of the solution.We would like the error estimate we 
onstru
t to have a 
onsistent time 
entering, so we will takepseudo time steps as depi
ted in Figure 5.3. The basi
 strategy will be to do a �ne timestep of�tfine 
entered around the 
urrent time tn, and then take a 
oarse time step of �t
rse = 2�tfineon the 
oarsened level, also 
entered around time tn. We will then 
ompare the �ne and 
oarseapproximations of �u�t to get an estimate of the trun
ation error. Note that we preserve the time
entering of the timestep and also maintain a 
onsistent CFL number for ea
h pseudo-timestep.Note also that this method requires an old solution at tn��tf , whi
h we use to 
ompute the initialstate for both the 
oarse and �ne approximations; the initial �ne state is 
omputed by averagingthe tn and tn�1 solutions in time, while the initial 
oarse state is 
omputed by spatial averaging ofthe tn�1 solution. At the initial timestep, this earlier time does not exist, and so we do not use thismethod, but instead use a user-de�ned method to 
onstru
t the initial grid hierar
hy.
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Figure 5.3: Ri
hardson Extrapolation time stepsFor the Euler equations, we will also only use the adve
tive part of the 
omplete timestep,Ad � (u � r)u to 
ompute estimations of the error. This will measure the error in the adve
tionpro
ess. It has the advantage of having no nonlo
al 
ontributions from the ellipti
 proje
tion oper-ator, so it is a good lo
alized error measure. Also, sin
e the adve
tion step will provide the sour
eterm for the proje
tion, we expe
t that the errors in adve
tion will be nonlo
alized by the proje
tionoperator.We 
onstru
t �ne and 
oarse approximations as follows:� Fine approximation1. Constru
t un� 12 ;fine = 12 (un + un�1)2. �tfine = (tn � tn�1)
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t uhalf;fineG = (ufine;t=ni+ 12 ;j ; vfine;t=ni;j+ 12 ) as in Se
tion 4.5.34. MAC Proje
tion: L�fine = r � uhalf;fineG as in Se
tion 4.5.15. Corre
t predi
ted velo
ities: ufinead = uhalfG �G�fine as in Se
tion 4.5.16. Store G�fine for future use on 
oarsened level.7. Re-predi
t velo
ities: tra
e uhalf;fine as in Se
tion 4.5.38. Adfine = �D(ufinead � uhalf;fine)9. F finevel = �ufinead � uhalf;fine� Coarse Approximation1. Constru
t un�1;
rse = Avgfine!
rse(un�1;`) andG�
rse = Avgfine!
rseG�fine from �ne approximation2. �t
rse = 2�tfine3. Predi
t uhalf;
rseG = (u
rse;t=ni+ 12 ;j ; v
rse;t=ni;j+ 12 ) as in �ne step4. Corre
t predi
ted velo
ities: u
rsead = uhalf;
rseG �G�
rse5. Re-predi
t velo
ities: tra
e uhalf;
rse6. Ad
rse = �D(u
rsead � uhalf;
rse)7. F 
rsevel = �u
rsead � uhalf;
rseNote that we save an ellipti
 solve by averaging the MAC proje
tion gradients from the �ne approx-imation for use during the 
oarse approximation.We then 
ompute the approximation to the error:EAD = Avfine!
rse(Adfine)�Ad
rse (5.2)



CHAPTER 5. ERROR ESTIMATION 169The error we 
ompute in (5.2) has units of [L℄[T ℄2 . We would like to nondimensionalize this so thatwe 
an 
ompare it against a nondimensional toleran
e. Following the example of the nondimen-sionalization of the Euler equations in 
uid dynami
s (see, for example, S
hli
hting [56℄), we useE� = [U ℄2[L℄ , where [U ℄ is a 
hara
teristi
 velo
ity (in our 
ase Max(u) ), and [L℄ is a 
hara
teristi
length, whi
h will usually be the length of the problem domain. Then, we 
an tag on all 
ells inwhi
h the s
aled error is greater than a toleran
e � :EADE� > �: (5.3)Note EÀD is a
tually de�ned on a grid whi
h is a fa
tor of 2 
oarser than 
`. This means that whenwe tag on a 
ell be
ause it satis�es the 
riteria in (5.3), we are a
tually tagging the four (in twodimensions) level ` 
ells whi
h overlie the 
oarsened grid on whi
h EÀD is de�ned.5.4 Grid GenerationOn
e we have tagged 
ells for re�nement using one or more of the methods des
ribedabove, we then must generate suitable blo
k-stru
tured re�ned grids. This generation pro
ess hastwo 
on
i
ting goals. First, we would like to generate eÆ
ient grids, in whi
h unne
essary re�nementis kept to minimum. This is quanti�ed by de�ning a grid eÆ
ien
y,� = number of tagged 
ellstotal number of 
ells re�ned (5.4)and demanding that the grids we generate ex
eed a pres
ribed eÆ
ien
y. We have found an eÆ
ien
yof around 70-80% to be useful. On the other hand, we would like to generate \blo
k-like" gridswhi
h minimize the surfa
e/volume ratio be
ause 
oarse-�ne interfa
es 
arry with them a 
ost bothin 
omputational work needed to enfor
e syn
hronization between levels, and be
ause of the error
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ells using error estimators: Tìj = TRUE if tagged for re�nement2. Coarsen list of tagged 
ells: T 
rse = 
oarsen(T `; FB)3. Call 
lustering algorithm 

rsenew = Cluster(T 
rse; �grids)4. Re�ne grids to new level 
`+1new = Refine(

rsenew ; FB � nr̀ef )Figure 5.4: Basi
 grid generation algorithmindu
ed by redu
ed a

ura
y at the 
oarse-�ne interfa
e. As was seen in Se
tion 3.4.2, if gridswith a high surfa
e/volume ratio are produ
ed, the in
reased a

ura
y of the re�ned pat
h 
anbe outweighed by the errors indu
ed at the 
oarse-�ne interfa
es. Also, be
ause we will be usingmultigrid a

eleration for our ellipti
 solvers, we would like to have grid 
on�gurations whi
h areas 
oarsenable as possible (see Se
tion 3.2.5), in order to reap the bene�ts of multigrid. We enfor
ea 
ertain degree of \blo
kiness" in the grids by use of a \blo
king fa
tor" FB , whi
h will be theminimum amount a set of grids 
an be 
oarsened. The blo
king fa
tor is enfor
ed by 
oarsening thearrays of 
ells whi
h are tagged for re�nement by FB before 
alling the 
lustering algorithm, whi
hthen will produ
e 
oarse grids, whi
h are then re�ned up to the resolution required, as des
ribed inFigure 5.4. When 
oarsening the list of tagged 
ells, if any �ne 
ell whi
h falls inside a 
oarsened
ell has been tagged for re�nement, then the entire 
oarsened 
ell is tagged.5.4.1 Clustering AlgorithmTo generate grid 
on�gurations from the list of tagged 
ells, we use the 
lustering algorithmof Berger and Rigoutsos [20℄. In this method, grid generation is an iterative and re
ursive pro
ess.The smallest box possible is pla
ed around the tagged 
ells. If the grid generated by this box doesnot satisfy the grid eÆ
ien
y requirement, then the algorithm looks for a good \
ut point" to split
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tion algorithm that 
reates a histogramof the number of tagged 
ells in both the X and Y dire
tions, and then prioritizes 
ut points by�rst looking for gaps in tagged 
ells (where the histogram goes to 0, a natural 
ut point), and thenby looking for pla
es where the se
ond derivative of the histogram 
hanges sign, whi
h is a goodindi
ator of a natural \edge" in the tagged 
ells. If all else fails, simple bise
tion of the box is used.Then, 
ut the initial box along the 
ut point line, and draw the smallest possible boxes aroundea
h of the two subgroups of tagged 
ells. If either of these boxes does not meet the grid eÆ
ien
y
riterion, then we look for another 
ut point in the o�ending box(es). This is 
ontinued until wehave a set of boxes whi
h all satisfy the grid eÆ
ien
y 
riterion.
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Chapter 6Results

This 
hapter will des
ribe the results of the various test problems we have used to validatethe algorithm. The test problems are 
hosen to demonstrate the 
onvergen
e properties and robust-ness of the AMR algorithm. There are various questions whi
h must be answered to demonstratethe e�e
tiveness of the method des
ribed in this work. Questions we would like to answer are:1. Are 
ow features 
orrupted when they 
ross the 
oarse-�ne interfa
e?2. What is the e�e
t of the volume-dis
repan
y 
orre
tion?3. Do we rea
h the a

ura
y of a globally re�ned 
al
ulation through the use of lo
al re�nements?6.1 Test Problem Des
riptionsTo answer the questions posed in the previous se
tion, we will use three test problems,whi
h are :1. Steady-state vortex in a box2. Traveling 
ounter-rotating vortex pair
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Figure 6.1: Initial vorti
ity distribution for single vortex problem.3. Three 
o-rotating vorti
es6.1.1 Single Vortex in a BoxThe �rst test problem is a single steady-state vortex in a box. Initial 
onditions are givenby: u�(r) = (�( 12r � 4r3) if r < R�(Rr ( 12R� 4R3)) if r � R (6.1)where r is the radial distan
e from the vortex 
enter, u� is the azimuthal velo
ity 
omponent aroundthe vortex 
enter, R is the radius of the vortex pat
h, and � is the vortex strength. For the singlevortex in a box problem, the vortex 
enter is pla
ed at (x; y) = ( 12 ; 12 ), R = 1:0, and � = 0:2. Theinitial vorti
ity distribution for this 
ase is shown in Figure 6.1.6.1.2 Traveling Vortex PairThe initial 
ondition is a pair of 
ounter-rotating vorti
es, ea
h with an initially 
ubi
vorti
ity pro�le. The 
ubi
 vorti
ity pro�le was 
hosen su
h that both the vorti
ity ! and its
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Figure 6.2: Initial vorti
ity distribution for traveling vortex problem.derivative d!dr are equal to zero at the radius R from the vortex 
enter, and the 
ir
ulation of thevortex is equal to 2��. The initial velo
ity for ea
h vortex in this 
ase is given by:u�(r) = (�� 83R5 r4 � 5R4 r3 + 103R2 r� if r < R�( 1r ) if r � R : (6.2)Using superposition, the velo
ity �eld indu
ed by ea
h vortex is added together to 
reate the totalvelo
ity �eld. For the test problem in this se
tion, there were two 
ounter-rotating vorti
es. The�rst vortex had a strength � = 0:35, a radius R = 0:15, and was 
entered at (x; y) = (:3; :65). These
ond vortex had a strength of � = �0:35, r = 0:15, and was 
entered at (x; y) = (:3; :35). Theinitial vorti
ity distribution is shown in Figure 6.2. Due to the velo
ity �eld indu
ed by ea
h vortex,the net e�e
t is that the vortex pair translates to the right.6.1.3 Three Co-Rotating Vorti
esFor this test problem, the initial 
ondition is given by three vorti
es with the 
ubi
 vorti
itypro�les des
ribed in Se
tion 6.1.2. In this 
ase, there are three 
o-rotating vorti
es. Ea
h vortex had
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Figure 6.3: Initial vorti
ity distribution for 3-vortex test 
asea strength of � = 0:50 and a radius of R = 0:75, and were 
entered at (0.68,0.5), (0.455, 0.65588457),and (0.455, 0.34411543). The initial vorti
ity distribution for this 
ase is shown in Figure 6.3. Thevorti
es indu
e a velo
ity �eld whi
h 
auses the three vorti
es to revolve around the 
enter of thedomain.6.2 Passage Through Coarse-Fine Interfa
esTo demonstrate that 
ow features 
an pass a
ross 
oarse-�ne interfa
es without distortionby the grid dis
ontinuity, we ran the two-vortex test 
ase with a 32�32 base grid and one fa
tor twore�nement, but holding the grid 
on�guration 
onstant at the original 
on�guration. In this 
ase,the traveling vorti
es will translate to the right, 
rossing the 
oarse-�ne interfa
e and passing ontothe 
oarse grid. This will demonstrate that 
ow features are not distorted as they 
ross the 
oarse-�ne interfa
e. Contour plots of the vorti
ity distribution are shown in Figure 6.4. For 
omparisonpurposes, the solution after 150 timesteps of a 32�32 single-grid 
ase is shown in Figure 6.5 As 
an
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eable 
orruption of the vorti
es as they 
ross the interfa
e, ex
ept for somespreading of the vorti
es, as is expe
ted due to the 
oarser resolution. Also, 
omparing the solutionsafter 150 
oarse timesteps, it is evident that the two solutions do not noti
eably di�er, so we re
overthe 
oarse single-grid solution after passing from the �ne pat
h, whi
h is what we expe
t.6.3 Volume-Dis
repan
y Corre
tionWe would also like to examine the e�e
t of the volume-dis
repan
y 
orre
tion des
ribedin Se
tion 4.4.2. We will use two test problems. First, we will look at the e�e
ts of the volume-dis
repan
y 
orre
tion for the steady-state single-vortex problem des
ribed in Se
tion 6.1.1. Then,we will examine its e�e
ts in a time-dependent 
ase (in
luding the e�e
ts of regridding) by lookingat the traveling vortex pair problem of Se
tion 6.1.2.6.3.1 Single VortexTo isolate the e�e
ts of the volume-dis
repan
y 
orre
tion without the 
ompli
ations ofregridding, we ran the single-vortex test 
ase with and without the volume-dis
repan
y 
orre
tion,whi
h 
orresponded to � = 0:9 and � = 0 respe
tively. A 
omparison of the distribution of � ispresented in Figure 6.6. Note that all of the plots in Figure 6.6 have the same s
ale, whi
h makesthe e�e
t of the volume-dis
repan
y 
orre
tion evident. Re
all that � 6= 1 is a measure of theerrors in adve
tion 
aused by the failure of freestream preservation. It is apparent from Figure 6.6that without the volume-dis
repan
y 
orre
tion, errors in adve
tion are generated at the 
oarse-�neinterfa
e, whi
h are then adve
ted throughout the 
ow (whi
h in this 
ase is a 
ounter-
lo
kwiserotating vortex), 
orrupting the solution even away from 
oarse-�ne interfa
es. In 
ontrast, with� = 0:9, the adve
tion errors are 
on�ned to the 
ells immediately adja
ent to the 
oarse-�ne
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(a) (b)

(
) (d)Figure 6.4: Vorti
ity distribution for traveling vortex problem after (a) 50 timesteps, (b) 75 timesteps,(
) 100 timesteps, and (d) 150 timesteps.
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Figure 6.5: 32�32 single-grid 
ase after 150 timestepsinterfa
e, and appear to be kept to the magnitude of the error made in one timestep. Sin
e thevolume-dis
repan
y 
orre
tion is a lagged one, and as su
h 
an only relax errors after they havebeen made, this is what we would expe
t.To further examine the adve
tion errors for the single-vortex 
ase, we ran a series of 
aseswith 32�32, 64�64, and 128�128 base grids, ea
h with one level of re�nement. To judge the e�e
tsof re�nement ratio on the adve
tion errors, ea
h 
ase was run with both nref = 2 and nref = 4.Max(�-1), whi
h is the error in �, is plotted against time for these 
ases in Figure 6.7. It is apparentfrom inspe
ting Figure 6.7 that, to �rst approximation, the adve
tion errors are a fun
tion of the
oarse grid spa
ing; the e�e
t of the re�nement ratio is only se
ondary. This is espe
ially apparentin the no-
orre
tion 
ase. Further inspe
tion of Figure 6.7(a) reveals that without the volume-dis
repan
y 
orre
tion, the errors 
onverge at roughly O(h
), where h
 is the 
oarse-grid spa
ing.(The a
tual order of 
onvergen
e for this 
ase appears to be between 1.1 and 1.3.) The dips inmax(�) at t = 12 and t = 25 arise be
ause the 
uid 
ontaining the maximum � is adve
ted into asour
e of a de�
ien
y in � (� < 1), whi
h 
auses some 
an
ellation of the extrema of the error.
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(a)

(b)

(
)Figure 6.6: � after (a) 1 timestep, (b) 10 timesteps, and (
) 20 timesteps. Pi
tures on left are withvolume-dis
repan
y 
orre
tion, pi
tures on right are without.
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Max(Lambda) vs. Time -- No Correction
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0.00 10.00 20.00(b)Figure 6.7: Max(�) vs. time for the single-vortex 
ase; (a) without volume-dis
repan
y 
orre
tion, and(b) with 
orre
tion. Note that (a) and (b) have di�erent s
ales.
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ales of Figures 6.7(a) and 6.7(b) shows that using the volume-dis
repan
y
orre
tion drasti
ally redu
es the maximum error, as was seen in Figure 6.6. As before, it appearsthat using the 
orre
tion restri
ts the error to something less than the error made in one timestep.Sin
e we expe
t this error to be O(h
)�t
, where �t
 is the 
oarse-grid timestep (whi
h is itselfO(h
)), we would expe
t that this would restore se
ond-order a

ura
y to this aspe
t of the method.(The a
tual 
onvergen
e rate appears to be around 1.6 between the 32�32 and 64�64 
ases, and1.85 between the 64�64 and 128�128 
ases.)6.3.2 Traveling Vortex CaseBe
ause freestream preservation errors are generated at 
oarse-�ne interfa
es, we expe
tthat 
hanging the grid stru
ture as the solution evolves will 
ompli
ate the issue somewhat. Toexamine the performan
e of the volume-dis
repan
y 
orre
tion in a fully time-dependent 
ase (in-
luding regridding), we repeat the 
ases in the previous se
tion, but with the initial 
onditions forthe traveling vortex pair of Se
tion 6.1.2. In this 
ase, however, we allow the grids to 
hange dy-nami
ally with the solution. For this set of test 
ases, we will regrid every two 
oarse-grid timesteps,using the Ri
hardson extrapolation error estimator of Se
tion 5.3.2. For the 32�32 base grid 
ase,we will use an error toleran
e of � = 0:8. Be
ause we expe
t the trun
ation error to s
ale as h2, wedivide this toleran
e by ( h
hf )2 = 4 ea
h time we re�ne the base grid, so the error estimation toleran
efor the 64�64 
ase will be � = 0:2, and for the 128�128 
ase, we will use � = 0:05. The distributionof the � �eld after 2, 24, 60, and 100 timesteps is shown in Figure 6.8, where no 
orre
tion wasapplied, and Figure 6.9, where the 
orre
tion was applied. Note that the 
olor s
ales are di�erentfor the two �gures.From examining Figure 6.8, it is apparent that as the grids move with the vorti
es, ea
h
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(a)

(b) (
)

(d)Figure 6.8: � (without volume-dis
repan
y 
orre
tion) after (a) 2, (b) 24, (
) 60, and (d) 100 timesteps.
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(a)

(b) (
)

(d)Figure 6.9: � (with volume-dis
repan
y 
orre
tion) after (a) 2, (b) 24, (
) 60, and (d) 100 timesteps.
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Max(Lambda) vs. Time -- No Correction
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0.00 200.00 400.00 600.00(b)Figure 6.10: Max(�) vs. time for the traveling vortex pair 
ase; (a) without volume-dis
repan
y 
orre
-tion, and (b) with 
orre
tion. On
e again, note that (a) and (b) have di�erent s
ales..new 
oarse-�ne interfa
e results in the 
reation of a new set of errors, whi
h is left behind on
e the
oarse-�ne interfa
e has moved. These errors are then adve
ted throughout the 
ow, as in the single-vortex 
ase. Even with the moving grids, Figure 6.9 shows that the volume-dis
repan
y 
orre
tionstill 
on�nes adve
tion errors to the 
ells immediately adja
ent to the 
oarse-�ne interfa
es, and on
eagain, limits them to approximately the error generated in one timestep. While this one-
ell-wideerror is left behind when the 
oarse-�ne interfa
e moves, it is qui
kly removed by the a
tion of thevolume-dis
repan
y 
orre
tions.Plots of Max(�) vs: time are shown in Figure 6.10. On
e again, note the radi
al redu
tionin the adve
tion error when the volume-dis
repan
y 
orre
tion is employed. Note that due to
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orre
ted 
ase is mu
h more os
illatory. This is expe
ted be
auseas the grids move, the 
orre
tion �eld must adjust to the new grid 
on�guration. In other respe
ts,the results of the time-dependent 
ase behave in the same way as for the steady-state 
al
ulation.This points to this te
hnique as a robust method for 
orre
ting errors due to the mismat
h inadve
tion velo
ities.6.4 A

ura
y of AMR Cal
ulationsAn important question for adaptive methods in general is whether lo
al re�nement 
anresult in improved a

ura
y. In Se
tion 3.2.1 it was demonstrated for Poisson's equation that simplyre�ning the 
omputational mesh without suÆ
iently linking 
oarse and �ne solutions did not improvethe global a

ura
y of the solution. Likewise, for our algorithm, we would hope that lo
al re�nementin
reases the a

ura
y of the solution. While we expe
t some errors due to the redu
ed a

ura
y at
oarse-�ne interfa
es, we hope that these errors are outweighed by the gain in a

ura
y from lo
alre�nement. Ideally, lo
al re�nement will result in a

ura
y 
omparable to that attained in a global�ne-grid 
omputation.To test this, we use the three-vortex problem. Sin
e there is no exa
t solution for thisproblem, a 512�512 single-grid 
omputation was performed, whi
h was treated as the \exa
t" so-lution for the purposes of this 
omparison. The errors were 
omputed by averaging the 512�512solution onto the valid regions of the 
omposite solution, subtra
ting the 
omposite solution, andthen using this 
omposite error to 
ompute the appropriate error norms. In these runs, the global(
oarsest-level) timestep was pres
ribed for ea
h run, so that the solution times would 
orrespond.Five 
ases were run, ea
h with one level of re�nement. Three 
ases were run with nref = 2, with



CHAPTER 6. RESULTS 186Base Grid Size h= 1/32 1/64 1/128 1/2562Ref 0.8 0.2 0.05 |4Ref 0.2 0.05 | |Table 6.1: Ri
hardson extrapolation error estimator toleran
es used for three-vortex problem

Figure 6.11: Vorti
ity and grid 
on�guration for three-vortex 
ase, 64�64 base grid, one nref = 2re�nement.32�32, 64�64, and 128�128 base grids. Also, two 
ases were run with nref = 4, with 32�32 and64�64 base grids. To estimate error for grid pla
ement, the Ri
hardson extrapolation error estimatorof Se
tion 5.3 was used. Sin
e it was assumed that our method is O(h2), the toleran
e for the errorestimator was adjusted to re
e
t the expe
ted spatial resolution; for example, if the toleran
e for a
ase with spatial resolution �x = �y = h was �, then the toleran
e for a 
ase where �x = �y = h2would be �4 . The error estimation toleran
es for ea
h 
ase is shown in Table 6.1The errors are tabulated in Tables 6.2 and 6.3 for the errors in the x� and y�velo
ities,respe
tively at t = 0:128. The vorti
ity distribution and grid 
on�gurations for the 64�64 base grid,nref = 2 
ase are shown in Figure 6.11.
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Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 0.185132 0.0464363 0.0121967 0.002821032Ref 0.0527198 0.0156918 0.00477001 |4Ref 0.0200913 0.00717611 | |(a) L1(error)Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 0.490627 0.172484 0.0418936 0.008474922Ref 0.171974 0.0423418 0.00978566 |4Ref 0.0439739 0.011447 | |(b) L2(error)Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 3.53649 1.55637 0.390388 0.06663532Ref 1.51012 0.387115 0.074577 |4Ref 0.387326 0.0722894 | |(
) L1(error)Table 6.2: Errors for x-velo
ity, time = 0.128
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Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 0.178308 0.0461935 0.0119461 0.002776692Ref 0.0536107 0.0156112 0.00482953 |4Ref 0.0195496 0.00746759 | |(a) L1(error)Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 0.477776 0.171707 0.0421551 0.008499392Ref 0.171671 0.0427243 0.00970393 |4Ref 0.0438788 0.0116263 | |(b) L2(error)Base Grid Size h= 1/32 1/64 1/128 1/256Single Grid 3.47099 1.54005 0.398559 0.07795022Ref 1.56308 0.389457 0.0836362 |4Ref 0.380423 0.0771922 | |(
) L1(error)Table 6.3: Errors for y-velo
ity, time = 0.128
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an be seen, for both times examined, and for both velo
ity 
omponents, lo
al re�nementin
reases the a

ura
y of the 
omputation as measured in L1; L2, and L1 norms. For the L2 and L1norms, the solution error is 
learly redu
ed to a level 
omparable to the single-grid result with thesame resolution. In other words, we see the same error for the 64�64 base grid with one re�nement ofnref = 2 as for the 128�128 single-grid 
omputation. This is most apparent in the L1 norm, wherethe numbers are almost identi
al; agreement between AMR results and the equivalent-resolutionsingle-grid results is slightly worse in the L2 norm, and in the L1 norm, agreement is often onlywithin a fa
tor of two. This trend is more apparent for the nref = 4 
ases. We believe that this isbe
ause, while the dominant errors in the solutions are on the interiors of the re�ned grids aroundthe vortex 
enters, there are small errors in the solutions whi
h are generated at the 
oarse-�neinterfa
es. While these errors do not 
ontribute signi�
antly to the L1 and L2 norms of the error,they a

umulate and a�e
t the L1 norm. One sour
e of error at the 
oarse-�ne error is due to the
onservative linear interpolation of the 
oarse-grid solution used to 
ompute boundary 
onditions forthe adve
tive updates. If the �eld being interpolated is not well-represented by linear interpolation,some errors will be generated at the 
oarse-�ne interfa
e due to interpolation errors. In the 
ase ofvelo
ity adve
tion, these interpolation errors will manifest themselves as �laments of vorti
ity one�ne 
ell wide whi
h are generated at 
oarse-�ne interfa
es and then adve
ted through the 
ow.Another sour
e of error in AMR 
omputations, whi
h was mentioned by Almgren et al[5℄, is 
oarse-grid errors whi
h are transported into re�ned regions. This is an inherent problemwith lo
ally adaptive methods, sin
e by design, the 
oarse-grid solution is less a

urate than that inre�ned regions. These errors 
an be minimized by 
hoosing an appropriate error estimator, whi
hwill ensure that the 
oarse-grid errors are roughly the same s
ale as errors on the �ne grid.
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reation of new grids through regridding 
an introdu
e errors. In many 
ases,
oarse-�ne errors at what were 
oarse-�ne interfa
es remain behind as a shadow of the previous grid
on�guration after the grids are moved. These errors are also then adve
ted through the 
ow. Aftera series of regridding operations, these errors 
an be 
reated in many di�erent regions of the domain.Also, in the present 
ode, when a region is newly re�ned from a 
oarser level, the 
oarse solution issimply interpolated to �ll the new re�ned grid. This 
reates errors on the new re�ned grid, sin
ethe newly interpolated �ne solution is not as smooth as if it had been a re�ned grid already. Forinstan
e, after the �rst post-regridding timestep, the divergen
e in newly-re�ned regions will 
ontaina high-frequen
y 
omponent whi
h is eventually damped by repeated appli
ation of the proje
tionoperators as the solution evolves. When a previously re�ned region is 
oarsened, the new validregions on the 
oarse grid are �lled with the averaged �ne solution. In this 
ase, we also see errorsdue to the fa
t that the averaging pro
ess introdu
es some error into the 
oarse solution. In either
ase, we see an in
reased error in the newly re�ned or 
oarsened regions.So, while the L1 and L2 norms re
e
t the improvement of the dominant solution errorsaround the vorti
es (whi
h respond well to re�nement be
ause they are on the interiors of the re�nedgrids), the lessened responsiveness of the L1 norm of the error re
e
ts the small errors generatedat the 
oarse-�ne interfa
es, whi
h are eventually spread through the domain by the ba
kground
ow�eld. This e�e
t is more apparent for the nref = 4 
ase, be
ause the errors at 
oarse-�neinterfa
es are larger, due to the stronger dis
ontinuity in the grid spa
ing at 
oarse-�ne interfa
esfor nref = 4.This is borne out by examination of the error distributions in these 
ases. If we really area
hieving �ne-grid a

ura
y, we would expe
t that the error distributions would look similar. We
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ially would like to see if solution errors near the 
oarse-�ne interfa
e are noti
eably 
orruptingthe solution. For the 64�64 base grid 
ase, Figure 6.12 shows the errors in the x-velo
ity, whileFigure 6.13 shows the errors in the y-velo
ity at t = 0:128. It is apparent that, while the errors lookvery mu
h like the errors in the 
orresponding single-grid 
ases, there is a small but noti
eable errorwhi
h is generated at 
oarse-�ne interfa
es and is then spread throughout the 
ow.To better show these small AMR errors, Figures 6.14 and 6.15 show the same results, butwith a smaller 
olor-s
ale range, to better show these errors.It should be noted, however, that while the AMR solutions show some additional errordue to 
oarse-�ne interfa
e errors, in all 
ases, re�nement does improve the a

ura
y of the solutionin all norms. In other words, while there is some additional error relative to the uniformly �ne-grid solution, the use of AMR does markedly improve the a

ura
y of the solution relative to theuniformly 
oarse-grid solution. Also, the errors generated at 
oarse-�ne interfa
es are still mu
hsmaller than the dominant errors in the solutions, whi
h are still due to solution features, ratherthan grid boundaries.Also, some of the 
oarse-�ne interfa
e error 
ould be redu
ed if the error-estimation 
riteriatook 
oarse-�ne errors into a

ount, as the error-estimation of [67℄ does; also, it might bene�t fromthe 
ux-based Ri
hardson extrapolation error-estimation method used by Propp, whi
h takes thesurfa
e/volume ratio of re�ned grids into a

ount.6.5 Performan
eAlmgren et al [5℄ demonstrated that when suitable 
are is used in optimizing the imple-mentation of an adaptive proje
tion algorithm, that sizeable savings in CPU time 
ould be realized.
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(a)

(b) (
)Figure 6.12: Error in x-velo
ity at t=0.128 for (a) 128�128 single-grid 
omputation, (b) 64�64 base gridwith one fa
tor 2 re�nement, and (
) 32�32 base grid with one fa
tor 4 re�nement.
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(a)

(b) (
)Figure 6.13: Error in y-velo
ity at t=0.128 for (a) 128�128 single-grid 
omputation, (b) 64�64 base gridwith one fa
tor 2 re�nement, and (
) 32�32 base grid with one fa
tor 4 re�nement.
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(a)

(b) (
)Figure 6.14: Error in x-velo
ity at t=0.128 for (a) 128�128 single-grid 
omputation, (b) 64�64 base gridwith one fa
tor 2 re�nement, and (
) 32�32 base grid with one fa
tor 4 re�nement. Note that the s
ale ofthe 
olor map has been altered to emphasize small errors
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(a)

(b) (
)Figure 6.15: Error in y-velo
ity at t=0.128 for (a) 128�128 single-grid 
omputation, (b) 64�64 base gridwith one fa
tor 2 re�nement, and (
) 32�32 base grid with one fa
tor 4 re�nement. Note that the s
ale ofthe 
olor map has been altered to emphasize small errors
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t that due to the similarity of the algorithms, suitable op-timization of the 
ode used in this work would produ
e similar savings. We do not present timingresults here be
ause the purpose of this work was to develop an algorithm whi
h represented a sim-pli�
ation of the algorithm used in [5℄. Be
ause the 
ode used in this work was a development 
ode,optimization for CPU eÆ
ien
y was not performed as part of this work. We expe
t that after someoptimization, the algorithm presented here would present similar savings.It should be mentioned that the pla
e where the 
omputational 
osts in
urred by thealgorithm in this work are mu
h higher than in [5℄ is in regridding operations. In [5℄, initializing new�ne-level solutions after regridding is performed entirely by interpolation of 
oarse-level data. In thiswork, we perform a series of level advan
es and ellipti
 solves. Also, the Ri
hardson extrapolationerror estimator involves an ellipti
 solve. So, in most 
ases, we would tend to regrid less often, andbu�er tagged 
ells more to 
ompensate.
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Chapter 7Software Implementation

Implementing adaptive methods 
an be diÆ
ult, requiring the use of fairly 
ompli
ateddata stru
tures and dynami
 memory management to manage 
omputations on the 
hanging gridstru
ture. The use of obje
t-oriented programming te
hniques, along with the use of a pre-existingsoftware infrastru
ture made this task manageable.The algorithms des
ribed in this work were implemented in a hybrid of C++ [63℄ andFORTRAN77 [23℄. C++, with its advan
ed dynami
 memory-management and obje
t-oriented
apabilities, was used to 
onstru
t 
lasses whi
h manage the 
omputation. On the other hand,
oating-point intensive operations were performed in FORTRAN, to take advantage of the greateroptimization of FORTRAN for 
oating-point operations. The 
ode used in this work, whi
h alsorepresented a sizeable amount of shared infrastru
ture whi
h was also used by Propp [51℄ andBetten
ourt [22℄, 
onsisted of 27,300 lines of C++ 
ode and 14,500 lines of FORTRAN 
ode. Theheader �les for this 
ode represented another 8200 lines of 
ode. These numbers do not in
lude the
ode asso
iated with BoxLib, an infrastru
ture library used as a base for the 
ode.
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lasses developed by the Center for Computational S
ien
eand Engineering (CCSE) at the Lawren
e Berkeley National Laboratory, was an instrumental part ofthe implementation of this work. BoxLib was developed to fa
ilitate management of 
omputationson unions of logi
ally re
tangular grids, and provided an infrastru
ture whi
h greatly simpli�eddevelopment of this algorithm.For a single-grid 
omputation, BoxLib provides mu
h of the infrastru
ture needed to easilyimplement a proje
tion method. The IntVe
t 
lass provides a 
onvenient way to store and operateon spatial indi
es. The Box 
lass provides fun
tionality for managing logi
ally re
tangular regionsin spa
e. To store data, the FArrayBox 
lass was used. The FArrayBox 
lass is a 
ontainer 
lassfor 
oating point data whi
h provides a 
onvenient way of interfa
ing FORTRAN and C++. It also
ontains fun
tionality for operating on 
oating-point data dire
tly.While it provides a 
onvenient infrastru
ture for implementing single-grid algorithms, formanaging adaptive 
omputations on a dynami
ally 
hanging hierar
hy of grids, BoxLib provedindispensable. The BoxArray 
lass, whi
h is an array of Box's, proved useful for des
ribing theunion of re
tangles whi
h make up a re�ned level. Additionally, the MultiFab 
lass, an array ofFArrayBoxs with many additional features, was quite useful for organizing and operating on dataon the unions of logi
ally re
tangular grids whi
h make up a level.7.2 Managing the AMR hierar
hyIn many ways, the basi
 stru
ture of this 
ode borrowed heavily from the adaptive imple-mentation of Almgren et al. [5℄. In general, our strategy has been to use a single parent AMR 
lass
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AMR

Physics-based 
Amr Level Class

Generic Amr Level

Figure 7.1: Basi
 
lass stru
ture for AMR 
omputations. Solid arrows indi
ate membership, while dashedlines indi
ate derivation. In this �gure, the AMR 
lass 
ontains a generi
 AMR Level 
lass (a
tually, anarray of them), and the physi
s-dependent 
lass is derived from the generi
 Amr Level 
lass.to manage the hierar
hy of levels. This parent 
lass 
ontains an array of AMR level 
lasses, whi
hmanage the solution on individual levels of re�nement. Sin
e mu
h of the fun
tionality needed bylevel 
lasses is generi
ally appli
able to a broad 
lass of adaptive algorithms, while other fun
tionalityand implementation details are spe
i�
 to a given problem being solved, broad use was made of theinheritan
e features of C++ by de�ning a generi
 level-based 
lass whi
h 
ontained the basi
 fun
-tionality for managing a solution on an AMR re�nement level and then deriving problem-spe
i�
physi
s-based 
lasses from the general AMR level 
lass. See Figure 7.1. For more on the use ofderivation in the design of AMR 
lasses, see Crut
h�eld and Wel
ome [32℄.We also extensively use the 
on
ept of level-operator 
lasses. A level-operator will 
ontainall the fun
tionality and auxiliary data stru
tures ne
essary to apply an operator on a level. Forthe Euler equations, examples of level operator 
lasses would be 
lasses whi
h manage the adve
tion
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tion operations done during the advan
e on a level.7.2.1 Ellipti
 SolverDesign of the ellipti
 solvers was 
ompli
ated by the desire to have a solver whi
h 
ould beused both as a stand-alone ellipti
 solver (used for Poisson's equation in [47℄ and for the steady-statedrift-di�usion equations in [22℄) and as a solver whi
h 
ould be in
luded in a time-dependent AMR
ode (whi
h was used in this work, and for the solution of porous media 
ow in a tri
kle-bed rea
torin [51℄). This dual obje
tive was realized through the use of derivation.First, a set of 
lasses was developed to provide ellipti
 solver 
apability for a generi
 AMRsystem. The 
lass AMRSolvermanages the hierar
hy of levels and provided an interfa
e to the ellipti
solver. The AMRSolver 
lass 
ontains an array of LevelSolver 
lasses, whi
h manage the solutionon ea
h AMR level. In the time dependent 
ase, the AMRSolver is a stati
ally de�ned obje
t whi
hexists parallel to the time-dependent AMR hierar
hy. The AMRSolver 
lass 
ontains all interfa
efun
tionality ne
essary to perform single-level or multi-level solves with `base � 0 (see Chapter 3),and to modify the solver's grid hierar
hy as it 
hanges during the time-dependent solution evolution.For a stand-alone ellipti
 solver, some 
apability had to be added to extend the ellipti
solver 
lasses for use in this 
ontext. For example, while the LevelSolver 
lasses manage thesolution on individual levels, they do not a
tually \own" the memory for the solution or right-hand-side, for eÆ
ien
y reasons. So, to 
onstru
t a stand-alone solver, an AMRPoisson 
lass was derivedfrom the AMRSolver 
lass, and a LevelPoisson 
lass was derived from the LevelSolver 
lass (seeFigure 7.2). This greatly simpli�ed 
ode-development and re-use, be
ause the same base 
lasseswere used for both the time-dependent and stand-alone solvers.
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AmrSolver LevelSolver

AmrPoisson LevelPoissonFigure 7.2: Class stru
ture for ellipti
 solver 
lasses. Solid arrows indi
ate membership, while dashedarrows indi
ate derivation.7.2.2 Euler Equation CodeAs was mentioned earlier, a great deal of the fun
tionality ne
essary for managing time-dependent AMR 
omputations is 
ommon a
ross spe
i�
 physi
al problem implementations. Forexample, the fun
tionality used to regrid, or to sub
y
le in time, is 
ommon to all implementationswhi
h follow the basi
 AMR model that we use. On the other hand, many operations, su
h asadvan
ing on a level, are spe
i�
 to the set of equations being solved. For this reason, the derivationand virtual fun
tion features of C++ were exploited heavily in the implementation of the algorithmsin this work. The Amr and AmrLevel 
lasses used as a starting point for the implementation of thiswork were modi�ed versions of 
lasses originally developed by CCSE for solving time-dependentproblems using AMR [5, 50℄. A s
hemati
 of the 
lass stru
ture used in the implementation of thisalgorithm is shown in Figure 7.3.The Amr 
lass, whi
h is very similar to the 
lass used by [5℄, manages the entire AMRhierar
hy and the global time-stepping. For the Euler equations, the Amr 
lass also allo
ates thestati
ally de�ned AmrSolver 
lass, whi
h will manage all ellipti
 solves. The Amr 
lass 
ontains anarray of AmrLevel 
lasses, whi
h 
ontain the basi
 fun
tionality to manage the solution on an AMR
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Amr AmrSolver

CCProjector VelocityAdvector

Euler

AmrLevel LevelSolver

Figure 7.3: Class stru
ture for time-dependent in
ompressible Euler 
lasses. Solid arrows indi
ate mem-bership, while dashed arrows indi
ate derivation.level. From the parent AmrLevel 
lass is derived an Euler 
lass, whi
h 
ontains the fun
tionalityne
essary to implement the spe
i�
 algorithm being implemented, in this 
ase, the 
ell-
enteredproje
tion method des
ribed in Chapter 4. The Euler 
lass allo
ates several level-operator 
lasses asne
essary, in
luding the CCProje
tor and Velo
ityAdve
tor 
lasses, whi
h manage the proje
tionand adve
tion parts of the algorithm, respe
tively. This design allows for greater modularity of thedi�erent 
omponents of the algorithm, and made it easier to share 
ode with other developers (forexample, the 
ode used to implement the algorithm des
ribed in this work, that of Betten
ourt [22℄,and that of Propp [51℄ shared mu
h of the basi
 infrastru
ture).
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ode-development and examination of the results of AMR 
omputations, good datavisualization is indispensable. We used two di�erent visualization tools. AmrVis [14℄ was developedby CCSE for the purpose of presenting results of AMR 
omputations, and proved to be quite usefulfor examining the results of �nished 
omputations. All 
olor pi
tures of AMR results in this workwere generated using AmrVis.For examining data during runs (for example, while debugging the 
ode), the VIGL graphi
slibrary [33℄, as extended by Hans Johansen for use with BoxLib, also proved quite useful.
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Chapter 8
Con
lusions
8.1 SummaryThis thesis presents an adaptive 
ell-
entered proje
tion method for the in
ompressibleEuler equations in two dimensions. We use blo
k-stru
tured lo
al re�nement in spa
e and time toredu
e the amount of 
omputational resour
es needed to 
ompute numeri
al solutions with adequateresolution.First, a single-grid algorithm was presented, whi
h uses the proje
tion formulation of Bell,Colella, and Glaz [16℄ to 
onstru
t a se
ond-order proje
tion method whi
h uses the approximateproje
tion dis
retization of Lai. Results were presented whi
h indi
ated that the method is se
ond-order a

urate.Then, a multilevel algorithm for solving Poisson's equation on a multilevel hierar
hy oflo
ally re�ned grids using multigrid-a

elerated point relaxation was presented. We introdu
ed thenotions of 
omposite operators, whi
h operate on variables de�ned on the multilevel hierar
hy ofgrids, and level operators, whi
h operate on variables de�ned on single re�ned levels. It was des
ribed



CHAPTER 8. CONCLUSIONS 205how the use of 
omposite operators will enable solutions to Poisson's equation to attain the in
reaseda

ura
y expe
ted from a lo
ally-re�ned solution. Results of a test 
omputation were presented todemonstrate the bene�ts of lo
al re�nement on CPU time and memory usage. Also, an alternatealgorithm was presented whi
h demonstrated the bene�ts of multilevel solution approa
h for ellipti
equations, rather than solving the equations using level operators and then 
omputing 
orre
tionsto ensure that the solution satis�es the equations based on 
omposite operators.The single-grid proje
tion algorithm was then extended to the solution of the in
ompressibleEuler equations on a multilevel hierar
hy of grids. Like the algorithm of Almgren et al. [5℄, thesolution on �ner grids is advan
ed at a �ner timestep than that on 
oarser grids, and then issyn
hronized with 
oarser levels when 
oarse and �ne solutions rea
h the same time. The algorithmdes
ribed in this thesis di�ers from that of Almgren et al. in three major respe
ts. For the proje
tionmethod des
ribed in this work, the syn
hronization step involves a syn
hronization proje
tion basedon 
ell-
entered 
omposite operators to ensure that the 
omposite solution satis�es the divergen
e
onstraint based on 
omposite operators. Also, to 
orre
t for errors in adve
tion due to the presen
eof 
oarse-�ne interfa
es, we employ a volume-dis
repan
y 
orre
tion based on the s
heme presentedby Propp [51℄ for porous media 
ows to 
ompute a lagged 
orre
tion whi
h approximately 
orre
tsfor errors in adve
tion. Finally, all ellipti
 solves performed during syn
hronization operations are
onstru
ted as multilevel solves over all levels whi
h have rea
hed the same time. Be
ause all ellipti
solves are based on 
ell-
entered dis
retizations, it is expe
ted that extension of this algorithm tomore 
ompli
ated problems should be simpli�ed.Then, strategies for identifying regions whi
h 
ould bene�t from lo
al re�nement are pre-sented. Re�ned grids 
an be pla
ed in user-de�ned lo
ations, or re�nements 
an be adaptively
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ed using user-de�ned 
riteria (usually based on solution features) or an estimate of lo
al trun-
ation error based on Ri
hardson extrapolation. Computation of estimates of the lo
al trun
ationerror for Poisson's equation involves 
omparing the Lapla
ian operator applied to the solution witha 
oarsened Lapla
ian operator applied to a 
oarsened solution. For time-dependent problems, we
ompute 
oarse and �ne approximations to the dis
rete update equation, and then 
ompare them.It was noted that using Ri
hardson extrapolation to estimate error, rather than using solution-basedestimators, allows the sour
es of solution error to be lo
alized, whi
h should improve the e�e
tivenessof lo
al re�nement.The adaptive algorithm des
ribed in this work was applied to a series of test problems todemonstrate its e�e
tiveness. It was shown that solution features are not 
orrupted as the 
ross
oarse-�ne interfa
es. Also, it was shown that the O(h) adve
tion errors due to 
oarse-�ne mis-mat
hes in adve
tion velo
ities 
an be redu
ed to O(h2) by using the volume-dis
repan
y 
orre
tions
heme used in this work. Finally, it was demonstrated that using lo
al re�nements 
an enablesolution a

ura
y 
omparable to the equivalent uniform �ne-grid solutions. Solution errors due tolo
al re�nement are presented as well. These errors, while enough to prevent the L1 norm of theerrors in lo
ally re�ned solutions from 
ompletely mat
hing single-grid errors, are still uniformlysmall, 
ompared to other feature-based solution errors.8.2 Con
lusions and Future WorkWe have shown that the method presented in this work is e�e
tive at modeling the simpletest 
ases presented in this work. In parti
ular, we have demonstrated that the error 
aused by theaddition of adaptivity is small in relation to other solution errors for the problems examined, and
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repan
y 
orre
tion is useful in redu
ing adve
tion errors to approximately theerrors resulting from one un
orre
ted timestep.The adaptive algorithm presented in this work is intended as the �rst step in a seriesof extensions. The �rst, most obvious step is the extension to the in
ompressible Navier-Stokesequations by adding vis
osity. In a similar vein, di�usion pro
esses should be added to the adve
teds
alar evolution equations. Also, extending this work to solve the equations of variable-densityin
ompressible 
ow would allow many more physi
al situations to be modeled.Extension of this work to more realisti
 geometries would be useful. Addition of embedded-boundary Cartesian grid te
hniques, like the ones employed in [50℄, would allow modeling of 
owsin more 
ompli
ated geometries. It is expe
ted that extension of this algorithm to the embeddedboundary 
ase will be simpli�ed by the fa
t that there is only one set of (
ell-
entered) solvers whi
hneed be extended. Also, along the lines of more realisti
 geometries would be the extension of thisalgorithm to three-dimensions, whi
h should be straightforward.The 
oarse-�ne errors seen in the 
omputations indi
ate the need for better error-estimationte
hniques, ones whi
h will a

ount for the presen
e of errors due to 
oarse-�ne interfa
es. Forexample, the 
ux-based Ri
hardson extrapolation error estimation te
hnique presented in Propp[51℄, whi
h in
ludes the surfa
e-to-volume ratio of grids in its error-estimation s
heme, 
ould proveuseful. Finally, there is the issue of regridding. In this work, a solution is 
reated on new �ne-levelgrids by simply interpolating the existing 
oarse-level solution to the �ne-level resolution. There iseviden
e that the �ne-level solution produ
ed in this way is not smooth enough, and that a better wayof initializing new grids with a smooth solution is needed. It is expe
ted that this will be
ome more
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ous 
ows, sin
e while the interpolated solution is somewhat smooth, these
ond derivatives of the interpolated solutions is not.
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